Maintenance of wind turbine farms is a huge task,with associated significant risks and potential hazard to the safety and well-being of people who are responsible for carrying the tower inspection tasks.Periodic inspe...Maintenance of wind turbine farms is a huge task,with associated significant risks and potential hazard to the safety and well-being of people who are responsible for carrying the tower inspection tasks.Periodic inspections are required for wind turbine tower to ensure that the wind turbines are in full working order,with no signs of potential failure.Therefore,the development of an automated wind tower inspection system has been very cnucial for the overall performance of the renewable wind power generation industry.In order to determine the life span of the tower,an investigation of robot design is discussed in this paper.It presents how a mechanical spring-loaded climbing robot can be designed and constructed to climb and rotate 360°around the tower.An adjustable circular shape robot is designed that allows the device to fit in different diameters of the wind generator tower.The rotational module is designed to allow the wheels to rotate and be able to go in a circular motion.The design further incorporates a suspension that allows the robot to go through any obstacle.This paper also presents a finite element spring stress analy sis and Simulink control system model to find the optimal parameters that are required for the wind tower climbing robot.展开更多
文摘Maintenance of wind turbine farms is a huge task,with associated significant risks and potential hazard to the safety and well-being of people who are responsible for carrying the tower inspection tasks.Periodic inspections are required for wind turbine tower to ensure that the wind turbines are in full working order,with no signs of potential failure.Therefore,the development of an automated wind tower inspection system has been very cnucial for the overall performance of the renewable wind power generation industry.In order to determine the life span of the tower,an investigation of robot design is discussed in this paper.It presents how a mechanical spring-loaded climbing robot can be designed and constructed to climb and rotate 360°around the tower.An adjustable circular shape robot is designed that allows the device to fit in different diameters of the wind generator tower.The rotational module is designed to allow the wheels to rotate and be able to go in a circular motion.The design further incorporates a suspension that allows the robot to go through any obstacle.This paper also presents a finite element spring stress analy sis and Simulink control system model to find the optimal parameters that are required for the wind tower climbing robot.