The main reason for the high strength in near-βtitanium alloys is the ultrafine precipitation of the acicular secondary a phase in theβmatrix.The purpose of this study is to use the pseudo-spinodal mechanism to obta...The main reason for the high strength in near-βtitanium alloys is the ultrafine precipitation of the acicular secondary a phase in theβmatrix.The purpose of this study is to use the pseudo-spinodal mechanism to obtain the ultrafine a phase for the design of a new high-strength near-γtitanium alloy.Thermodynamic calculations and TC21-(TC21+15 Mo)diffusion couple composition gradient experiments were used to demonstrate that TC21+3 Mo alloy can undergo a pseudo-spinodal decomposition to obtain the ultrafine a phase,resulting in a high-strength alloy.By adjusting the heat treatment process to obtain a bimodal microstructure,the alloy exhibits a good balance between ultimate tensile strength(1351 MPa)and plasticity(8.5%strain).Thus,it was demonstrated that the pseudospinodal mechanism combined with a high-throughput diffusion couple technique is an effective method for designing high-strength titanium alloys.展开更多
基金financially supported by the National Key Technologies R&D Program of China(No.2016YFB0701301)the National Natural Science Foundation of China(Nos.51901251,51671218 and 51501229)the State Key Laboratory of Powder Metallurgy Independent Project of China(No.621021907)。
文摘The main reason for the high strength in near-βtitanium alloys is the ultrafine precipitation of the acicular secondary a phase in theβmatrix.The purpose of this study is to use the pseudo-spinodal mechanism to obtain the ultrafine a phase for the design of a new high-strength near-γtitanium alloy.Thermodynamic calculations and TC21-(TC21+15 Mo)diffusion couple composition gradient experiments were used to demonstrate that TC21+3 Mo alloy can undergo a pseudo-spinodal decomposition to obtain the ultrafine a phase,resulting in a high-strength alloy.By adjusting the heat treatment process to obtain a bimodal microstructure,the alloy exhibits a good balance between ultimate tensile strength(1351 MPa)and plasticity(8.5%strain).Thus,it was demonstrated that the pseudospinodal mechanism combined with a high-throughput diffusion couple technique is an effective method for designing high-strength titanium alloys.