Radiotherapy induces DNA damage,resulting in cell cycle arrest and activation of cell-intrinsic death pathways.However,the radioresistance of some tumour entities such as malignant melanoma limits its clinical applica...Radiotherapy induces DNA damage,resulting in cell cycle arrest and activation of cell-intrinsic death pathways.However,the radioresistance of some tumour entities such as malignant melanoma limits its clinical application.The innate immune sensing receptor retinoic acid-inducible gene I(RIG-I)is ubiquitously expressed and upon activation triggers an immunogenic form of cell death in a variety of tumour cell types including melanoma.To date,the potential of RIG-I ligands to overcome radioresistance of tumour cells has not been investigated.Here,we demonstrate that RIG-I activation enhanced the extent and immunogenicity of irradiation-induced tumour cell death in human and murine melanoma cells in vitro and improved survival in the murine B16 melanoma model in vivo.Transcriptome analysis pointed to a central role for p53,which was confirmed using p53^(-/-)B16 cells.In vivo,the additional effect of RIG-I in combination with irradiation on tumour growth was absent in mice carrying p53^(-/-)B16 tumours,while the antitumoural response to RIG-I stimulation alone was maintained.Our results identify p53 as a pivotal checkpoint that is triggered by RIG-I resulting in enhanced irradiation-induced tumour cell death.Thus,the combined administration of RIG-I ligands and radiotherapy is a promising approach to treating radioresistant tumours with a functional p53 pathway,such as melanoma.展开更多
基金funded by Deutsche Forschungsgemeinschaft(DFG,GermanResearch Foundation)under Germany's Excellence Strategy EXC2151390873048 of which E.B.,G.H.,and M.S.are memberssupported by other grants of DFG,including Project-ID 369799452 TRR237 to E.B.,G.H.,and M.S.,Project-ID 397484323 TRR259 to G.H.,GRK 2168 to E.B.and M.S.,and DFG SCHL1930/1-2+1 种基金funded by the Deutsche Krebshilfe through a Mildred Scheel Nachwuchszentrum(70113307)the recipient of a PhD scholarship from Bayer Pharma AG(40860128).
文摘Radiotherapy induces DNA damage,resulting in cell cycle arrest and activation of cell-intrinsic death pathways.However,the radioresistance of some tumour entities such as malignant melanoma limits its clinical application.The innate immune sensing receptor retinoic acid-inducible gene I(RIG-I)is ubiquitously expressed and upon activation triggers an immunogenic form of cell death in a variety of tumour cell types including melanoma.To date,the potential of RIG-I ligands to overcome radioresistance of tumour cells has not been investigated.Here,we demonstrate that RIG-I activation enhanced the extent and immunogenicity of irradiation-induced tumour cell death in human and murine melanoma cells in vitro and improved survival in the murine B16 melanoma model in vivo.Transcriptome analysis pointed to a central role for p53,which was confirmed using p53^(-/-)B16 cells.In vivo,the additional effect of RIG-I in combination with irradiation on tumour growth was absent in mice carrying p53^(-/-)B16 tumours,while the antitumoural response to RIG-I stimulation alone was maintained.Our results identify p53 as a pivotal checkpoint that is triggered by RIG-I resulting in enhanced irradiation-induced tumour cell death.Thus,the combined administration of RIG-I ligands and radiotherapy is a promising approach to treating radioresistant tumours with a functional p53 pathway,such as melanoma.