Due to the impoundment of the Yangtze River, the Three Gorges Dam in China fosters high land-use dynamics. Soil erosion is expected to increase dramatically. One of the key factors in soil erosion control is the veget...Due to the impoundment of the Yangtze River, the Three Gorges Dam in China fosters high land-use dynamics. Soil erosion is expected to increase dramatically. One of the key factors in soil erosion control is the vegetation cover and crop type. However, determining these factors adequately for the use in soil erosion modeling is very time-consuming especially for large mountainous areas, such as the Xiangxi (香溪) catchment in the Three Gorges area. In our study, the crop and management factor C was calculated using the fractional vegetation cover (CFvc) based on Landsat-TM images from 2005, 2006, and 2007 and on literature studies (CLIT). In 2007, the values of CFvc range between 0.001 and 0.98 in the Xiangxi catchment. The mean CFVC value is 0.05. CLIT values are distinctly higher, ranging from 0.08 to 0.46 with a mean value of 0.32 in the Xiangxi catchment. The mean potential soil loss amounts to 120.62 t/ha/a in the Xiangxi catchment when using CLIT for modeling. Based on CFVC, the predicted mean soil loss in the Xiangxi catchment is 11.50 t/ha/a. Therefore, CLIT appears to bemore reliable than the C factor based on the fractional vegetation cover.展开更多
基金supported by the Federal German Ministry of Education and Research (BMBF) (No. 03 G 0669)coordinated by the German Jülich Research Centre (FZJ)
文摘Due to the impoundment of the Yangtze River, the Three Gorges Dam in China fosters high land-use dynamics. Soil erosion is expected to increase dramatically. One of the key factors in soil erosion control is the vegetation cover and crop type. However, determining these factors adequately for the use in soil erosion modeling is very time-consuming especially for large mountainous areas, such as the Xiangxi (香溪) catchment in the Three Gorges area. In our study, the crop and management factor C was calculated using the fractional vegetation cover (CFvc) based on Landsat-TM images from 2005, 2006, and 2007 and on literature studies (CLIT). In 2007, the values of CFvc range between 0.001 and 0.98 in the Xiangxi catchment. The mean CFVC value is 0.05. CLIT values are distinctly higher, ranging from 0.08 to 0.46 with a mean value of 0.32 in the Xiangxi catchment. The mean potential soil loss amounts to 120.62 t/ha/a in the Xiangxi catchment when using CLIT for modeling. Based on CFVC, the predicted mean soil loss in the Xiangxi catchment is 11.50 t/ha/a. Therefore, CLIT appears to bemore reliable than the C factor based on the fractional vegetation cover.