Laser cutting is a non-contact thermal cutting process and an integral part of manufacturing. In metal processing, laser cutting is at the forefront of the manufacturing chain followed by joining and manufacturing pro...Laser cutting is a non-contact thermal cutting process and an integral part of manufacturing. In metal processing, laser cutting is at the forefront of the manufacturing chain followed by joining and manufacturing processes like welding. The future of metal manufacturing processes like laser cutting shall rely on intelligent systems such as automation and robotics based on the advancement of technology and digital transformation spearheaded by Industry 4.0. Moreover, the digital transition where robots and automated systems are key drivers creates a broader platform to utilize energy-efficiency materials. Such energy-efficient materials include high-strength steels (HSS) for structural applications (e.g. bio-energy structures, wind turbines, ice-going vessels) onshore, offshore and in the Arctic region. The aim of this paper is to elucidate the prospects of robot laser cutting systems in the framework of integrated metal manufacturing in future factories. Previous studies on laser cutting technologies are examined based on scientific and industrial perspectives. Robot laser cutting system is compared with the well-known flat-bed laser cutting CNC machine in several aspects including flexibility in manufacturing, ease for digitalization, off-line capabilities and investment analysis. The findings shall help to determine the competitiveness of robot laser cutting systems with flat-bed laser cutting CNC machines, especially when considering metal manufacturing in small and medium-sized enterprises (SMEs). The outcome of this study is to stir up experimental and computational research on robot laser cutting systems of metals, and help companies in their decision-making process when deciding which laser cutting system will best suit their manufacturing operations in the future.展开更多
The introduction of the high power fiber laser with brilliant beam quality has enabled the rapid development of remote laser welding (RLW). This paper presents a theoretical review of remote laser welding. As a promis...The introduction of the high power fiber laser with brilliant beam quality has enabled the rapid development of remote laser welding (RLW). This paper presents a theoretical review of remote laser welding. As a promising technology, RLW offers increased flexibility, high operational speed, and reduced cycle time to process a wide range of workpieces. This study presents the typical characteristics of RLW with high power fiber lasers. It also investigates the influence of process parameters such as laser power, welding speed, shielding gas supply, beam inclination and focal position on the weld seam quality.展开更多
The level of automation in the manufacture of recreational aluminum boats is very low. Robotized welding is rarely utilized, although it is commonly considered as the most effective way to reduce costs and increase co...The level of automation in the manufacture of recreational aluminum boats is very low. Robotized welding is rarely utilized, although it is commonly considered as the most effective way to reduce costs and increase competitiveness. A reason for the under-exploitation of robotics can be found in the construction of aluminum boats;boat models and their detailed structures are almost without exception individual pieces. A new stiffener structure for an aluminum recreational boat hull is developed in this work. Construction of the stiffener as a module allows exploitation of the advantages of modularization. The number of different parts is reduced and the structure simplified improves the applicability of robotic welding and provides benefits accruing from mass production. The same module can be used in several boat models. The modularity also makes it possible to use the same advanced robot welding fixture for a variety of boat models.展开更多
文摘Laser cutting is a non-contact thermal cutting process and an integral part of manufacturing. In metal processing, laser cutting is at the forefront of the manufacturing chain followed by joining and manufacturing processes like welding. The future of metal manufacturing processes like laser cutting shall rely on intelligent systems such as automation and robotics based on the advancement of technology and digital transformation spearheaded by Industry 4.0. Moreover, the digital transition where robots and automated systems are key drivers creates a broader platform to utilize energy-efficiency materials. Such energy-efficient materials include high-strength steels (HSS) for structural applications (e.g. bio-energy structures, wind turbines, ice-going vessels) onshore, offshore and in the Arctic region. The aim of this paper is to elucidate the prospects of robot laser cutting systems in the framework of integrated metal manufacturing in future factories. Previous studies on laser cutting technologies are examined based on scientific and industrial perspectives. Robot laser cutting system is compared with the well-known flat-bed laser cutting CNC machine in several aspects including flexibility in manufacturing, ease for digitalization, off-line capabilities and investment analysis. The findings shall help to determine the competitiveness of robot laser cutting systems with flat-bed laser cutting CNC machines, especially when considering metal manufacturing in small and medium-sized enterprises (SMEs). The outcome of this study is to stir up experimental and computational research on robot laser cutting systems of metals, and help companies in their decision-making process when deciding which laser cutting system will best suit their manufacturing operations in the future.
文摘The introduction of the high power fiber laser with brilliant beam quality has enabled the rapid development of remote laser welding (RLW). This paper presents a theoretical review of remote laser welding. As a promising technology, RLW offers increased flexibility, high operational speed, and reduced cycle time to process a wide range of workpieces. This study presents the typical characteristics of RLW with high power fiber lasers. It also investigates the influence of process parameters such as laser power, welding speed, shielding gas supply, beam inclination and focal position on the weld seam quality.
文摘The level of automation in the manufacture of recreational aluminum boats is very low. Robotized welding is rarely utilized, although it is commonly considered as the most effective way to reduce costs and increase competitiveness. A reason for the under-exploitation of robotics can be found in the construction of aluminum boats;boat models and their detailed structures are almost without exception individual pieces. A new stiffener structure for an aluminum recreational boat hull is developed in this work. Construction of the stiffener as a module allows exploitation of the advantages of modularization. The number of different parts is reduced and the structure simplified improves the applicability of robotic welding and provides benefits accruing from mass production. The same module can be used in several boat models. The modularity also makes it possible to use the same advanced robot welding fixture for a variety of boat models.