Stem cells are present in the tissues and organs and remain in a quiescent and undifferentiated state until it is physiologically necessary to produce new descendant cells.Due to their multipotency property,mesenchyma...Stem cells are present in the tissues and organs and remain in a quiescent and undifferentiated state until it is physiologically necessary to produce new descendant cells.Due to their multipotency property,mesenchymal stem cells have attracted considerable attention worldwide due to their immunomodulation and therapeutic function in tissue regeneration.Stem cells secrete components such as paracrine factors,extracellular vesicles,and exosomes which have been shown to have anti-inflammatory,anti-aging,reconstruction and wound healing potentials in many in vitro and in vivo models.The pluripotency and immunomodulatory features of stem cells could potentially be an effective tool in cell therapy and tissue repair.Aging affects the capacity for self-renewal and differentiation of stem cells,decreasing the potential for regeneration and the loss of optimal functions in organisms over time.Current progress in the field of cellular therapy and regenerative medicine has facilitated the evolution of particular guidelines and quality control approaches,which eventually lead to clinical trials.Cell therapy could potentially be one of the most promising therapies to control aging due to the fact that single stem cell transplantation can regenerate or substitute the injured tissue.To understand the involvement of stem cells not only in tissue maintenance and disease but also in the control of aging it is important to know and identify their properties,functions,and regulation in vivo,which are addressed in this review.展开更多
文摘Stem cells are present in the tissues and organs and remain in a quiescent and undifferentiated state until it is physiologically necessary to produce new descendant cells.Due to their multipotency property,mesenchymal stem cells have attracted considerable attention worldwide due to their immunomodulation and therapeutic function in tissue regeneration.Stem cells secrete components such as paracrine factors,extracellular vesicles,and exosomes which have been shown to have anti-inflammatory,anti-aging,reconstruction and wound healing potentials in many in vitro and in vivo models.The pluripotency and immunomodulatory features of stem cells could potentially be an effective tool in cell therapy and tissue repair.Aging affects the capacity for self-renewal and differentiation of stem cells,decreasing the potential for regeneration and the loss of optimal functions in organisms over time.Current progress in the field of cellular therapy and regenerative medicine has facilitated the evolution of particular guidelines and quality control approaches,which eventually lead to clinical trials.Cell therapy could potentially be one of the most promising therapies to control aging due to the fact that single stem cell transplantation can regenerate or substitute the injured tissue.To understand the involvement of stem cells not only in tissue maintenance and disease but also in the control of aging it is important to know and identify their properties,functions,and regulation in vivo,which are addressed in this review.