Sugarcane is used worldwide for sugar, ethanol and energy production. In Brazil, the shift from burned to unburned harvest systems resulted in increases in nitrogen fertilization rates, which can impact root architect...Sugarcane is used worldwide for sugar, ethanol and energy production. In Brazil, the shift from burned to unburned harvest systems resulted in increases in nitrogen fertilization rates, which can impact root architecture and biomass. The expectation is also an increase in sugarcane biomass. The study hypothesized that high N rates applied to sugarcane fields increases root growth and N stored in roots, promoting higher biomass and N accumulated in shoots. Two experiments were set up in Southeastern Brazil, on a Typic Kandiudox (TK) and Rhodic Eutrudox (RE). Four treatments were studied 1) N application in the plant-cane (0 and 120 kg·ha-1 N) and 2) N application in the ratoon (0 and 150 kg·ha-1 N). The shoot biomass and the root density (by the core method up to 0.6 m) were evaluated over the first ratoon crop cycle, and the N content in those compartments was also examined. There was no carry over effect on N applied at planting in root and shoot biomass in the ratoon crop cycle. At the RE site, the ratoon N fertilization increased root density in the superficial soil layer (0 - 0.2 m) and close to the plants (<0.3 m). The effect of N addition on root biomass, and biomass and N accumulated in shoot was limited in both sites. Increasing N rates in unburned sugarcane fields do not consistently increases root and shoot biomass under Brazilian field conditions.展开更多
Three assays were developed from April 3, 1995 to October 10, 2005. The work with corn was conducted in a greenhouse, using velvet bean (Mucuna aterrima) and sunn hemp (Crotalaria juncea) as green manure with 15N labe...Three assays were developed from April 3, 1995 to October 10, 2005. The work with corn was conducted in a greenhouse, using velvet bean (Mucuna aterrima) and sunn hemp (Crotalaria juncea) as green manure with 15N labeling of either shoots or roots, in two soils with contrasting textural classes. The mineralization of N from legume plants incorporated into the two soils was investigated too. This work included two green manures: velvet bean and sunn hemp, and the common bean (Phaseolus vulgaris) residues. Nitrogen from the velvet bean accounted for a greater proportion of the soil inorganic N;shoots were responsible for most of N accumulated. Common bean residues caused immobilization of inorganic N. The leguminous species added were intensively and promptly mineralized, preserving the soil native nitrogen. One hundred days after emergence of the corn, velvet bean provided higher accumulation of nitrogen in the soil, higher absorption by corn plants and accumulation in the aerial part. The green manure decomposition was more intense in the medium textured soil. In this soil, highest nitrogen losses were also observed. The sugarcane (Saccharum spp.) was cultivated for five years in the field and was harvested three times;15N recovery was evaluated in the first two harvests. The combination of inorganic fertilizer and green manure resulted in higher sugarcane yields than either N source applied separately;however, in the second cutting the yields were higher where sunn hemp was used than in plots with ammonium sulfate. The recovery of N by the first two consecutive harvests accounted for 19% to 21% of the N applied as sunn hemp and 46% to 49% of the N applied as ammonium sulfate. Very little inorganic N was present in the 0-40 cm soil layer with both N sources.展开更多
文摘Sugarcane is used worldwide for sugar, ethanol and energy production. In Brazil, the shift from burned to unburned harvest systems resulted in increases in nitrogen fertilization rates, which can impact root architecture and biomass. The expectation is also an increase in sugarcane biomass. The study hypothesized that high N rates applied to sugarcane fields increases root growth and N stored in roots, promoting higher biomass and N accumulated in shoots. Two experiments were set up in Southeastern Brazil, on a Typic Kandiudox (TK) and Rhodic Eutrudox (RE). Four treatments were studied 1) N application in the plant-cane (0 and 120 kg·ha-1 N) and 2) N application in the ratoon (0 and 150 kg·ha-1 N). The shoot biomass and the root density (by the core method up to 0.6 m) were evaluated over the first ratoon crop cycle, and the N content in those compartments was also examined. There was no carry over effect on N applied at planting in root and shoot biomass in the ratoon crop cycle. At the RE site, the ratoon N fertilization increased root density in the superficial soil layer (0 - 0.2 m) and close to the plants (<0.3 m). The effect of N addition on root biomass, and biomass and N accumulated in shoot was limited in both sites. Increasing N rates in unburned sugarcane fields do not consistently increases root and shoot biomass under Brazilian field conditions.
基金To the technical research support of Gilberto Farias,Benedito Mota,and Maria Aparecida C.de GodoyTo FAPESP and CNPq for the grants.Piraíseeds for green manure and cover crops and Fundag for the support.
文摘Three assays were developed from April 3, 1995 to October 10, 2005. The work with corn was conducted in a greenhouse, using velvet bean (Mucuna aterrima) and sunn hemp (Crotalaria juncea) as green manure with 15N labeling of either shoots or roots, in two soils with contrasting textural classes. The mineralization of N from legume plants incorporated into the two soils was investigated too. This work included two green manures: velvet bean and sunn hemp, and the common bean (Phaseolus vulgaris) residues. Nitrogen from the velvet bean accounted for a greater proportion of the soil inorganic N;shoots were responsible for most of N accumulated. Common bean residues caused immobilization of inorganic N. The leguminous species added were intensively and promptly mineralized, preserving the soil native nitrogen. One hundred days after emergence of the corn, velvet bean provided higher accumulation of nitrogen in the soil, higher absorption by corn plants and accumulation in the aerial part. The green manure decomposition was more intense in the medium textured soil. In this soil, highest nitrogen losses were also observed. The sugarcane (Saccharum spp.) was cultivated for five years in the field and was harvested three times;15N recovery was evaluated in the first two harvests. The combination of inorganic fertilizer and green manure resulted in higher sugarcane yields than either N source applied separately;however, in the second cutting the yields were higher where sunn hemp was used than in plots with ammonium sulfate. The recovery of N by the first two consecutive harvests accounted for 19% to 21% of the N applied as sunn hemp and 46% to 49% of the N applied as ammonium sulfate. Very little inorganic N was present in the 0-40 cm soil layer with both N sources.