Knowledge graphs are employed in several tasks,such as question answering and recommendation systems,due to their ability to represent relationships between concepts.Automatically constructing such a graphs,however,re...Knowledge graphs are employed in several tasks,such as question answering and recommendation systems,due to their ability to represent relationships between concepts.Automatically constructing such a graphs,however,remains an unresolved challenge within knowledge representation.To tackle this challenge,we propose CtxKG,a method specifically aimed at extracting knowledge graphs in a context of limited resources in which the only input is a set of unstructured text documents.CtxKG is based on OpenIE(a relationship triple extraction method)and BERT(a language model)and contains four stages:the extraction of relationship triples directly from text;the identification of synonyms across triples;the merging of similar entities;and the building of bridges between knowledge graphs of different documents.Our method distinguishes itself from those in the current literature(i)through its use of the parse tree to avoid the overlapping entities produced by base implementations of OpenIE;and(ii)through its bridges,which create a connected network of graphs,overcoming a limitation similar methods have of one isolated graph per document.We compare our method to two others by generating graphs for movie articles from Wikipedia and contrasting them with benchmark graphs built from the OMDb movie database.Our results suggest that our method is able to improve multiple aspects of knowledge graph construction.They also highlight the critical role that triple identification and named-entity recognition have in improving the quality of automatically generated graphs,suggesting future paths for investigation.Finally,we apply CtxKG to build BlabKG,a knowledge graph for the Blue Amazon,and discuss possible improvements.展开更多
Piráis a reading comprehension dataset focused on the ocean,the Brazilian coast,and climate change,built from a collection of scientific abstracts and reports on these topics.This dataset represents a versatile l...Piráis a reading comprehension dataset focused on the ocean,the Brazilian coast,and climate change,built from a collection of scientific abstracts and reports on these topics.This dataset represents a versatile language resource,particularly useful for testing the ability of current machine learning models to acquire expert scientific knowledge.Despite its potential,a detailed set of baselines has not yet been developed for Pirá.By creating these baselines,researchers can more easily utilize Piráas a resource for testing machine learning models across a wide range of question answering tasks.In this paper,we define six benchmarks over the Pirádataset,covering closed generative question answering,machine reading comprehension,information retrieval,open question answering,answer triggering,and multiple choice question answering.As part of this effort,we have also produced a curated version of the original dataset,where we fixed a number of grammar issues,repetitions,and other shortcomings.Furthermore,the dataset has been extended in several new directions,so as to face the aforementioned benchmarks:translation of supporting texts from English into Portuguese,classification labels for answerability,automatic paraphrases of questions and answers,and multiple choice candidates.The results described in this paper provide several points of reference for researchers interested in exploring the challenges provided by the Pirádataset.展开更多
基金The authors of this work would like to thank the Center for Artificial Intelligence(C4AI-USP)and the support from the São Paulo Research Foundation(FAPESP grant#2019/07665-4)and from the IBM CorporationFabio G.Cozman acknowledges partial support by CNPq grant Pq 305753/2022-3This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-Brazil(CAPES)-Finance Code 001。
文摘Knowledge graphs are employed in several tasks,such as question answering and recommendation systems,due to their ability to represent relationships between concepts.Automatically constructing such a graphs,however,remains an unresolved challenge within knowledge representation.To tackle this challenge,we propose CtxKG,a method specifically aimed at extracting knowledge graphs in a context of limited resources in which the only input is a set of unstructured text documents.CtxKG is based on OpenIE(a relationship triple extraction method)and BERT(a language model)and contains four stages:the extraction of relationship triples directly from text;the identification of synonyms across triples;the merging of similar entities;and the building of bridges between knowledge graphs of different documents.Our method distinguishes itself from those in the current literature(i)through its use of the parse tree to avoid the overlapping entities produced by base implementations of OpenIE;and(ii)through its bridges,which create a connected network of graphs,overcoming a limitation similar methods have of one isolated graph per document.We compare our method to two others by generating graphs for movie articles from Wikipedia and contrasting them with benchmark graphs built from the OMDb movie database.Our results suggest that our method is able to improve multiple aspects of knowledge graph construction.They also highlight the critical role that triple identification and named-entity recognition have in improving the quality of automatically generated graphs,suggesting future paths for investigation.Finally,we apply CtxKG to build BlabKG,a knowledge graph for the Blue Amazon,and discuss possible improvements.
基金The work was carried out at the Center for Artificial Intelligence(C4AI-USP)with support from the São Paulo Research Foundation(FAPESP grant#2019/07665-4)from the IBM Corporation.This research was also partially supported by ItaúUnibanco S.A.+1 种基金M.M.Joséand F.Nakasato have been supported by the ItaúScholarship Program(PBI)of the Data Science Center(C2D)of the Escola Politécnica da Universidade de São PauloWe acknowledge support by CAPES-Finance Code 001.A.H.R.Costa and F.G.Cozman were partially supported by CNPq grants 310085/2020-9 and 305753/2022-3 respectively.Paulo Pirozelli was supported by the FAPESP grant 2019/26762-0.
文摘Piráis a reading comprehension dataset focused on the ocean,the Brazilian coast,and climate change,built from a collection of scientific abstracts and reports on these topics.This dataset represents a versatile language resource,particularly useful for testing the ability of current machine learning models to acquire expert scientific knowledge.Despite its potential,a detailed set of baselines has not yet been developed for Pirá.By creating these baselines,researchers can more easily utilize Piráas a resource for testing machine learning models across a wide range of question answering tasks.In this paper,we define six benchmarks over the Pirádataset,covering closed generative question answering,machine reading comprehension,information retrieval,open question answering,answer triggering,and multiple choice question answering.As part of this effort,we have also produced a curated version of the original dataset,where we fixed a number of grammar issues,repetitions,and other shortcomings.Furthermore,the dataset has been extended in several new directions,so as to face the aforementioned benchmarks:translation of supporting texts from English into Portuguese,classification labels for answerability,automatic paraphrases of questions and answers,and multiple choice candidates.The results described in this paper provide several points of reference for researchers interested in exploring the challenges provided by the Pirádataset.