Let ACD(M, SL(d,R)) denote the pairs (f, A) so that f∈ A C Diff^1(M) is a C^1-Anosov transitive diffeomorphisms and A is an SL(d,R) cocycle dominated with respect to f. We prove that open and densely in ACD...Let ACD(M, SL(d,R)) denote the pairs (f, A) so that f∈ A C Diff^1(M) is a C^1-Anosov transitive diffeomorphisms and A is an SL(d,R) cocycle dominated with respect to f. We prove that open and densely in ACD(M, SL(d,R)), in appropriate topologies, the pair (f,A) has simple spectrum with respect to the unique maximal entropy measure μf. Then, we prove prevalence of trivial spectrum near the dynamical cocycle of an area-preserving map and also for generic cocycles in AUtLeb(M) × LP(M, SL(d, R)).展开更多
基金Supported by FCT-Fundao para a Ciência e a Tecnologia and CNPq-Brazil(Grant No.PEst-OE/MAT/UI0212/2011)
文摘Let ACD(M, SL(d,R)) denote the pairs (f, A) so that f∈ A C Diff^1(M) is a C^1-Anosov transitive diffeomorphisms and A is an SL(d,R) cocycle dominated with respect to f. We prove that open and densely in ACD(M, SL(d,R)), in appropriate topologies, the pair (f,A) has simple spectrum with respect to the unique maximal entropy measure μf. Then, we prove prevalence of trivial spectrum near the dynamical cocycle of an area-preserving map and also for generic cocycles in AUtLeb(M) × LP(M, SL(d, R)).