Applications of a constitutive framework providing compound complexity analysis and indexing of coarse-grained self-similar time series representing behavioural data are presented. A notion of behavioural entropy and ...Applications of a constitutive framework providing compound complexity analysis and indexing of coarse-grained self-similar time series representing behavioural data are presented. A notion of behavioural entropy and hysteresis is introduced as two different forms of compound measures. These measures provide clinically applicable complexity analysis of behavioural patterns yielding scalar characterisation of time-varying behaviours registered over an extended period of time. The behavioural data are obtained using body attached sensors providing non-invasive readings of heart rate, skin blood perfusion, blood oxygenation, skin temperature, movement and steps frequency. The results using compound measures of behavioural patterns of fifteen healthy individuals are presented. The application of the compound measures is shown to correlate with complexity analysis. The correlation is demonstrated using two healthy subjects compared against a control group. This indicates a possibility to use these measures in place of fractional dimensions to provide a finer characterisation of behavioural patterns observed using sensory data acquired over a long period of time.展开更多
文摘Applications of a constitutive framework providing compound complexity analysis and indexing of coarse-grained self-similar time series representing behavioural data are presented. A notion of behavioural entropy and hysteresis is introduced as two different forms of compound measures. These measures provide clinically applicable complexity analysis of behavioural patterns yielding scalar characterisation of time-varying behaviours registered over an extended period of time. The behavioural data are obtained using body attached sensors providing non-invasive readings of heart rate, skin blood perfusion, blood oxygenation, skin temperature, movement and steps frequency. The results using compound measures of behavioural patterns of fifteen healthy individuals are presented. The application of the compound measures is shown to correlate with complexity analysis. The correlation is demonstrated using two healthy subjects compared against a control group. This indicates a possibility to use these measures in place of fractional dimensions to provide a finer characterisation of behavioural patterns observed using sensory data acquired over a long period of time.