We study summing multipliers from Banach spaces of analytic functions on the unit disc of the complex plane to the complex Banach sequence lattices. The domain spaces are abstract variants of the classical Hardy space...We study summing multipliers from Banach spaces of analytic functions on the unit disc of the complex plane to the complex Banach sequence lattices. The domain spaces are abstract variants of the classical Hardy spaces generated by the complex symmetric spaces. Applying interpolation methods, we prove the Hausdorff Young and Hardy-Littlewood type theorems. We show applications of these results to study summing multipliers from the Hardy-Orlicz spaces to the Orlicz sequence lattices. The obtained results extend the well-known results for the Hp spaces.展开更多
基金Committee of Scientific Research,Poland,grant N201 385034
文摘We study summing multipliers from Banach spaces of analytic functions on the unit disc of the complex plane to the complex Banach sequence lattices. The domain spaces are abstract variants of the classical Hardy spaces generated by the complex symmetric spaces. Applying interpolation methods, we prove the Hausdorff Young and Hardy-Littlewood type theorems. We show applications of these results to study summing multipliers from the Hardy-Orlicz spaces to the Orlicz sequence lattices. The obtained results extend the well-known results for the Hp spaces.