The paper presents the application of Finite Element Method in thermal analysis of underground power cable system. The computations were performed for power cables buried in-line in the ground at a depth of 2 meters. ...The paper presents the application of Finite Element Method in thermal analysis of underground power cable system. The computations were performed for power cables buried in-line in the ground at a depth of 2 meters. The developed mathematical model allows determining the two-dimensional temperature distribution in the soil, thermal backfill and power cables. The simulations studied the effect of soil and cable backfill thermal conductivity on the maximum temperature of the cable conductor. Also, the effect of cable diameter on the temperature of cable core was studied. Numerical analyses were performed based on a program written in MATLAB.展开更多
This paper lists the contribution in the international interdisciplinary reference – Encyclopedia of Thermal Stresses(ETS). The ETS, edited by the world famous expert in field of Thermal Stresses – Professor Richard...This paper lists the contribution in the international interdisciplinary reference – Encyclopedia of Thermal Stresses(ETS). The ETS, edited by the world famous expert in field of Thermal Stresses – Professor Richard Hetnarski from Rochester Institute of Technology, was published by Springer in 2014. This unique Encyclopedia, subdivided into 11 volumes is the most extensive and comprehensive work related to the Thermal Stresses topic. The entries were carefully prepared by specialists in the field of thermal stresses, elasticity, heat conduction, optimization among others. The Polish authors' contribution within this work is significant; over 70 entries were prepared by them.展开更多
文摘The paper presents the application of Finite Element Method in thermal analysis of underground power cable system. The computations were performed for power cables buried in-line in the ground at a depth of 2 meters. The developed mathematical model allows determining the two-dimensional temperature distribution in the soil, thermal backfill and power cables. The simulations studied the effect of soil and cable backfill thermal conductivity on the maximum temperature of the cable conductor. Also, the effect of cable diameter on the temperature of cable core was studied. Numerical analyses were performed based on a program written in MATLAB.
文摘This paper lists the contribution in the international interdisciplinary reference – Encyclopedia of Thermal Stresses(ETS). The ETS, edited by the world famous expert in field of Thermal Stresses – Professor Richard Hetnarski from Rochester Institute of Technology, was published by Springer in 2014. This unique Encyclopedia, subdivided into 11 volumes is the most extensive and comprehensive work related to the Thermal Stresses topic. The entries were carefully prepared by specialists in the field of thermal stresses, elasticity, heat conduction, optimization among others. The Polish authors' contribution within this work is significant; over 70 entries were prepared by them.