Poly(methyl methacrylate)(PMMA) is widely used for graphene transfer and device fabrication.However,it inevitably leaves a thin layer of polymer residues after acetone rinsing and leads to dramatic degradation of devi...Poly(methyl methacrylate)(PMMA) is widely used for graphene transfer and device fabrication.However,it inevitably leaves a thin layer of polymer residues after acetone rinsing and leads to dramatic degradation of device performance.How to eliminate contamination and restore clean surfaces of graphene is still highly demanded.In this paper,we present a reliable and position-controllable method to remove the polymer residues on graphene films by laser exposure.Under proper laser conditions,PMMA residues can be substantially reduced without introducing defects to the underlying graphene.Furthermore,by applying this laser cleaning technique to the channel and contacts of graphene fieldeffect transistors(GFETs),higher carrier mobility as well as lower contact resistance can be realized.This work opens a way for probing intrinsic properties of contaminant-free graphene and fabricating high-performance GFETs with both clean channel and intimate graphene/metal contact.展开更多
Temperature and humidity independent control(THIC)air-conditioning system is a promising technology.In this work,a novel temperature and humidity independent control(THIC)system is proposed,namely VMD-ACERS,which inte...Temperature and humidity independent control(THIC)air-conditioning system is a promising technology.In this work,a novel temperature and humidity independent control(THIC)system is proposed,namely VMD-ACERS,which integrates vacuum membrane-based dehumidification and air carrying energy radiant air-conditioning system.This work establishes a novel coefficient of performance(COP)model of VMD-ACERS.The main parameters affecting the COP of conventional fan coil unit cooling system(FCUCS)and VMD-ACERS are investigated.The performance of FCUCS and VMD-ACERS are compared,and the energy-saving potential of VMD-ACERS is proved.Results indicate that,for FCUCS,the importance ranking of parameters is basically stable.However,for VMD-ACERS,the importance ranking will be affected by FCU and refrigerant.The most important parameters of VMD-ACERS are condensation temperature and permeate side pressure.On the contrary,superheating,subcooling are relatively less important parameters.For VMD-ACERS,it is not necessary to pursue the membrane with very high selectivity,because the selectivity of membrane would also be a less important parameter when it reaches 500.The COP of VMD-ACERS is higher than that of FCUCS when the permeate side pressure is higher than 8 k Pa.The VMD-ACERS solves two technical problems about power-saving and thermal comfort of conventional THIC,and can extend the application of THIC air-conditioning system.展开更多
基金the National Basic Research Program of China(Grant No.2013CBA01604)the National Science and Technology Major Project of China(Grant No.2011ZX02707)
文摘Poly(methyl methacrylate)(PMMA) is widely used for graphene transfer and device fabrication.However,it inevitably leaves a thin layer of polymer residues after acetone rinsing and leads to dramatic degradation of device performance.How to eliminate contamination and restore clean surfaces of graphene is still highly demanded.In this paper,we present a reliable and position-controllable method to remove the polymer residues on graphene films by laser exposure.Under proper laser conditions,PMMA residues can be substantially reduced without introducing defects to the underlying graphene.Furthermore,by applying this laser cleaning technique to the channel and contacts of graphene fieldeffect transistors(GFETs),higher carrier mobility as well as lower contact resistance can be realized.This work opens a way for probing intrinsic properties of contaminant-free graphene and fabricating high-performance GFETs with both clean channel and intimate graphene/metal contact.
基金The National Key Technology Support Program(2015BAJ03B01)the Hunan Provincial Innovation Foundation for Postgraduate Studies(CX20190287)。
文摘Temperature and humidity independent control(THIC)air-conditioning system is a promising technology.In this work,a novel temperature and humidity independent control(THIC)system is proposed,namely VMD-ACERS,which integrates vacuum membrane-based dehumidification and air carrying energy radiant air-conditioning system.This work establishes a novel coefficient of performance(COP)model of VMD-ACERS.The main parameters affecting the COP of conventional fan coil unit cooling system(FCUCS)and VMD-ACERS are investigated.The performance of FCUCS and VMD-ACERS are compared,and the energy-saving potential of VMD-ACERS is proved.Results indicate that,for FCUCS,the importance ranking of parameters is basically stable.However,for VMD-ACERS,the importance ranking will be affected by FCU and refrigerant.The most important parameters of VMD-ACERS are condensation temperature and permeate side pressure.On the contrary,superheating,subcooling are relatively less important parameters.For VMD-ACERS,it is not necessary to pursue the membrane with very high selectivity,because the selectivity of membrane would also be a less important parameter when it reaches 500.The COP of VMD-ACERS is higher than that of FCUCS when the permeate side pressure is higher than 8 k Pa.The VMD-ACERS solves two technical problems about power-saving and thermal comfort of conventional THIC,and can extend the application of THIC air-conditioning system.