Forced and mixed convection heat and mass transfer are studied numerically for water containingmetallic corrosion products in a heated or cooled vertical tube with variable thermophysical propertiesat super-critical p...Forced and mixed convection heat and mass transfer are studied numerically for water containingmetallic corrosion products in a heated or cooled vertical tube with variable thermophysical propertiesat super-critical pressures. The fouling mechanisms and fouling models are presented. The influenceof variable properties at super-critical pressures on forced or mixed convection has been analyzed.The differences between heat and mass transfer under heating and cooling conditions are discussed. Itis found that variable properties, especially buoyancy, greatly influence the fluid flow and heat masstransfer.展开更多
Corrosion products of structural materials when contained in water usually are in two states:soluble state and colloidal particles with diameter about 10^(-3)—10^(-1)μm.Deposits of such corrosion products on tube su...Corrosion products of structural materials when contained in water usually are in two states:soluble state and colloidal particles with diameter about 10^(-3)—10^(-1)μm.Deposits of such corrosion products on tube surfaces under high pressure will jeopardize the operating economy of power plant equipment and even result in accidents. A numerical study is reported in this paper of the natural convective heat and mass transfer on a vertical heated plate subject to the first or mixed kind of boundary conditions for high-pressure water(P=17MPa)containing metal corrosion products with consideration of variable thermophysical properties.展开更多
A numerical study is reported of laminar natural convective heat and mass transfer on a vertical cooled plate for water containing metal corrosion products at super-critical pressures. The influence of variable proper...A numerical study is reported of laminar natural convective heat and mass transfer on a vertical cooled plate for water containing metal corrosion products at super-critical pressures. The influence of variable properties at super-critical pressures on natural convection has been analyzed. The difference between heat and mass transfer under cooling or heating conditions is also discussed and some correlations for heat and mass transfer under cooling conditions are recommended.展开更多
文摘Forced and mixed convection heat and mass transfer are studied numerically for water containingmetallic corrosion products in a heated or cooled vertical tube with variable thermophysical propertiesat super-critical pressures. The fouling mechanisms and fouling models are presented. The influenceof variable properties at super-critical pressures on forced or mixed convection has been analyzed.The differences between heat and mass transfer under heating and cooling conditions are discussed. Itis found that variable properties, especially buoyancy, greatly influence the fluid flow and heat masstransfer.
文摘Corrosion products of structural materials when contained in water usually are in two states:soluble state and colloidal particles with diameter about 10^(-3)—10^(-1)μm.Deposits of such corrosion products on tube surfaces under high pressure will jeopardize the operating economy of power plant equipment and even result in accidents. A numerical study is reported in this paper of the natural convective heat and mass transfer on a vertical heated plate subject to the first or mixed kind of boundary conditions for high-pressure water(P=17MPa)containing metal corrosion products with consideration of variable thermophysical properties.
文摘A numerical study is reported of laminar natural convective heat and mass transfer on a vertical cooled plate for water containing metal corrosion products at super-critical pressures. The influence of variable properties at super-critical pressures on natural convection has been analyzed. The difference between heat and mass transfer under cooling or heating conditions is also discussed and some correlations for heat and mass transfer under cooling conditions are recommended.