期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
窄带成像国际结直肠内镜分型在结直肠病变诊治中的价值 被引量:9
1
作者 杨雪 刘培曦 +2 位作者 肖迅 王璞 李娟 《中国内镜杂志》 2018年第5期1-6,共6页
目的评价非放大内镜下窄带成像(NBI)国际结直肠内镜分型(NICE)实时预判结直肠病变性质并指导治疗的价值。方法对结直肠隆起或扁平隆起性的黏膜病变采用NICE分型进行实时预判分类和处置建议,依据活检、内镜或外科手术后的病理结果评价NIC... 目的评价非放大内镜下窄带成像(NBI)国际结直肠内镜分型(NICE)实时预判结直肠病变性质并指导治疗的价值。方法对结直肠隆起或扁平隆起性的黏膜病变采用NICE分型进行实时预判分类和处置建议,依据活检、内镜或外科手术后的病理结果评价NICE分型的敏感性、特异性、准确性、阳性预测值和阴性预测值。进行观察一致性检验。结果共计241例患者307处病变被纳入分析。其中非肿瘤性病变12.07%、腺瘤性病变82.07%、癌5.86%,病变直径0.1~6.0 cm。NICE分型预判肿瘤性及非肿瘤性病变的敏感性、特异性、准确性、阳性预测值、阴性预测值分别为97.04%、89.19%、96.09%、98.50%和80.49%。一致性检验,判断肿瘤性病变和非肿瘤性病变的Kappa值为0.795,判断黏膜下深层病变和黏膜下浅层以上病变的Kappa值为0.875,总的Kappa值为0.814。结论 NICE分型能较准确地实时预判结直肠病变的性质并指导治疗,有利于推广仅将肿瘤性病变纳入内镜下切除或外科手术的适度治疗模式。 展开更多
关键词 NICE分型 窄带成像 结直肠病变
下载PDF
Artificial intelligence empowers the second-observer strategy for colonoscopy:a randomized clinical trial 被引量:2
2
作者 Pu Wang Xiao-Gang liu +11 位作者 Min Kang Xue Peng Mei-Ling Shu Guan-Yu Zhou pei-xi liu Fei Xiong Ming-Ming Deng Hong-Fen Xia Jian-Jun Li Xiao-Qi Long Yan Song Liang-Ping Li 《Gastroenterology Report》 SCIE CSCD 2023年第1期216-223,共8页
Background:In colonoscopy screening for colorectal cancer,human vision limitationsmay lead to highermiss rate of lesions;artificial intelligence(AI)assistance has been demonstrated to improve polyp detection.However,t... Background:In colonoscopy screening for colorectal cancer,human vision limitationsmay lead to highermiss rate of lesions;artificial intelligence(AI)assistance has been demonstrated to improve polyp detection.However,there still lacks direct evidence to demonstrate whether AI is superior to trainees or experienced nurses as a second observer to increase adenoma detection during colonoscopy.In this study,we aimed to compare the effectiveness of assistance fromAI and human observer during colonoscopy.Methods:A prospective multicenter randomized study was conducted from 2 September 2019 to 29 May 2020 at four endoscopy centers in China.Eligible patients were randomized to either computer-aided detection(CADe)-assisted group or observer-assisted group.The primary outcome was adenoma per colonoscopy(APC).Secondary outcomes included polyp per colonoscopy(PPC),adenoma detection rate(ADR),and polyp detection rate(PDR).We compared continuous variables and categorical variables by using R studio(version 3.4.4).Results:A total of 1,261(636 in the CADe-assisted group and 625 in the observer-assisted group)eligible patients were analysed.APC(0.42 vs 0.35,P=0.034),PPC(1.13 vs 0.81,P<0.001),PDR(47.5%vs 37.4%,P<0.001),ADR(25.8%vs 24.0%,P=0.464),the number of detected sessile polyps(683 vs 464,P<0.001),and sessile adenomas(244 vs 182,P=0.005)were significantly higher in the CADe-assisted group than in the observer-assisted group.False detections of the CADe system were lower than those of the human observer(122 vs 191,P<0.001).Conclusions:Compared with the human observer,the CADe system may improve the clinical outcome of colonoscopy and reduce disturbance to routine practice(Chictr.org.cn No.:ChiCTR1900025235). 展开更多
关键词 artificial intelligence colon cancer screening ADENOMA early detection computer-aided detection
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部