Gyrokinetic theory is arguably the most important tool for numerical studies of transport physics in magnetized plasmas.However,exact local energy–momentum conservation laws for the electromagnetic gyrokinetic system...Gyrokinetic theory is arguably the most important tool for numerical studies of transport physics in magnetized plasmas.However,exact local energy–momentum conservation laws for the electromagnetic gyrokinetic system have not been found despite continuous effort.Without such local conservation laws,energy and momentum can be instantaneously transported across spacetime,which is unphysical and casts doubt on the validity of numerical simulations based on the gyrokinetic theory.The standard Noether procedure for deriving conservation laws from corresponding symmetries does not apply to gyrokinetic systems because the gyrocenters and electromagnetic field reside on different manifolds.To overcome this difficulty,we develop a high-order field theory on heterogeneous manifolds for classical particle-field systems and apply it to derive exact,local conservation laws,in particular the energy–momentum conservation laws,for the electromagnetic gyrokinetic system.A weak Euler–Lagrange(EL)equation is established to replace the standard EL equation for the particles.It is discovered that an induced weak EL current enters the local conservation laws,and it is the new physics captured by the high-order field theory on heterogeneous manifolds.A recently developed gauge-symmetrization method for high-order electromagnetic field theories using the electromagnetic displacement-potential tensor is applied to render the derived energy–momentum conservation laws electromagnetic gauge-invariant.展开更多
In both quantum and classical field systems,conservation laws such as the conservation of energy and momentum are widely regarded as fundamental properties.A broadly accepted approach to deriving conservation laws is ...In both quantum and classical field systems,conservation laws such as the conservation of energy and momentum are widely regarded as fundamental properties.A broadly accepted approach to deriving conservation laws is built using Noether's method.However,this procedure is still unclear for relativistic particle-field systems where particles are regarded as classical world lines.In the present study,we establish a general manifestly covariant or geometric field theory for classical relativistic particle-field systems.In contrast to quantum systems,where particles are viewed as quantum fields,classical relativistic particle-field systems present specific challenges.These challenges arise from two sides.The first comes from the mass-shell constraint.To deal with the mass-shell constraint,the Euler–Lagrange–Barut(ELB)equation is used to determine the particle's world lines in the four-dimensional(4D)Minkowski space.Besides,the infinitesimal criterion,which is a differential equation in formal field theory,is reconstructed by an integro-differential form.The other difficulty is that fields and particles depend on heterogeneous manifolds.To overcome this challenge,we propose using a weak version of the ELB equation that allows us to connect local conservation laws and continuous symmetries in classical relativistic particle-field systems.By applying a weak ELB equation to classical relativistic particle-field systems,we can systematically derive local conservation laws by examining the underlying symmetries of the system.Our proposed approach provides a new perspective on understanding conservation laws in classical relativistic particle-field systems.展开更多
A manifestly covariant, or geometric, field theory of relativistic classical particle-field systems is devel- oped. The connection between the space-time symmetry and energy-momentum conservation laws of the system is...A manifestly covariant, or geometric, field theory of relativistic classical particle-field systems is devel- oped. The connection between the space-time symmetry and energy-momentum conservation laws of the system is established geometrically without splitting the space and time coordinates; i.e., space- time is treated as one entity without choosing a coordinate system. To achieve this goal, we need to overcome two difficulties. The first difficulty arises from the fact that the particles and the field reside on different manifolds. As a result, the geometric Lagrangian density of the system is a function of the 4-potential of the electromagnetic fields and also a functional of the particles' world lines. The other difficulty associated with the geometric setting results from the mass-shell constraint. The standard Euler-Lagrange (EL) equation for a particle is generalized into the geometric EL equation when the mass-shell constraint is imposed. For the particle-field system, the geometric EL equation is further generalized into a weak geometric EL equation for particles. With the EL equation for the field and the geometric weak EL equation for particles, the symmetries and conservation laws can be established geometrically. A geometric expression for the particle energy-momentum tensor is derived for the first time, which recovers the non-geometric form in the literature for a chosen coordinate system.展开更多
基金supported by the Chinese Scholarship Council(CSC)(No.201806340074)Shenzhen Clean Energy Research Institute and National Natural Science Foundation of China(No.12005141)+3 种基金supported by the US Department of Energy(No.DE-AC02-09CH11466)supported by the National MC Energy R&D Program(No.2018YFE0304100)National Key Research and Development Program(Nos.2016YFA0400600,2016YFA0400601 and 2016YFA0400602)the National Natural Science Foundation of China(Nos.11905220 and 11805273)。
文摘Gyrokinetic theory is arguably the most important tool for numerical studies of transport physics in magnetized plasmas.However,exact local energy–momentum conservation laws for the electromagnetic gyrokinetic system have not been found despite continuous effort.Without such local conservation laws,energy and momentum can be instantaneously transported across spacetime,which is unphysical and casts doubt on the validity of numerical simulations based on the gyrokinetic theory.The standard Noether procedure for deriving conservation laws from corresponding symmetries does not apply to gyrokinetic systems because the gyrocenters and electromagnetic field reside on different manifolds.To overcome this difficulty,we develop a high-order field theory on heterogeneous manifolds for classical particle-field systems and apply it to derive exact,local conservation laws,in particular the energy–momentum conservation laws,for the electromagnetic gyrokinetic system.A weak Euler–Lagrange(EL)equation is established to replace the standard EL equation for the particles.It is discovered that an induced weak EL current enters the local conservation laws,and it is the new physics captured by the high-order field theory on heterogeneous manifolds.A recently developed gauge-symmetrization method for high-order electromagnetic field theories using the electromagnetic displacement-potential tensor is applied to render the derived energy–momentum conservation laws electromagnetic gauge-invariant.
基金supported by National Natural Science Foundation of China(No.12005141)supported by National Natural Science Foundation of China(No.11805273)+2 种基金supported by the Collaborative Innovation Program of Hefei Science Center,CAS(No.2021HSCCIP019)National MC Energy R&D Program(No.2018YFE0304100)National Natural Science Foundation of China(No.11905220)。
文摘In both quantum and classical field systems,conservation laws such as the conservation of energy and momentum are widely regarded as fundamental properties.A broadly accepted approach to deriving conservation laws is built using Noether's method.However,this procedure is still unclear for relativistic particle-field systems where particles are regarded as classical world lines.In the present study,we establish a general manifestly covariant or geometric field theory for classical relativistic particle-field systems.In contrast to quantum systems,where particles are viewed as quantum fields,classical relativistic particle-field systems present specific challenges.These challenges arise from two sides.The first comes from the mass-shell constraint.To deal with the mass-shell constraint,the Euler–Lagrange–Barut(ELB)equation is used to determine the particle's world lines in the four-dimensional(4D)Minkowski space.Besides,the infinitesimal criterion,which is a differential equation in formal field theory,is reconstructed by an integro-differential form.The other difficulty is that fields and particles depend on heterogeneous manifolds.To overcome this challenge,we propose using a weak version of the ELB equation that allows us to connect local conservation laws and continuous symmetries in classical relativistic particle-field systems.By applying a weak ELB equation to classical relativistic particle-field systems,we can systematically derive local conservation laws by examining the underlying symmetries of the system.Our proposed approach provides a new perspective on understanding conservation laws in classical relativistic particle-field systems.
基金This research was supported by the Na- tional Magnetic Confinement Fusion Energy Research Project (Grant Nos. 2015GB111003 and 2014GB124005), the National Natural Science Foundation of China (Grant Nos. NSFC- 11575185, 11575186, and 11305171), JSPS-NRF-NSFC A3 Fore- sight Program (Grant No. 11261140328), the Key Research Pro- gram of Frontier Sciences CAS (QYZDB-SSW-SYS004), Geo- Algorithmic Plasma Simulator (GAPS) Project, and the National Magnetic Confinement Fusion Energy Research Project (Grant No. 2013GB111002B).
文摘A manifestly covariant, or geometric, field theory of relativistic classical particle-field systems is devel- oped. The connection between the space-time symmetry and energy-momentum conservation laws of the system is established geometrically without splitting the space and time coordinates; i.e., space- time is treated as one entity without choosing a coordinate system. To achieve this goal, we need to overcome two difficulties. The first difficulty arises from the fact that the particles and the field reside on different manifolds. As a result, the geometric Lagrangian density of the system is a function of the 4-potential of the electromagnetic fields and also a functional of the particles' world lines. The other difficulty associated with the geometric setting results from the mass-shell constraint. The standard Euler-Lagrange (EL) equation for a particle is generalized into the geometric EL equation when the mass-shell constraint is imposed. For the particle-field system, the geometric EL equation is further generalized into a weak geometric EL equation for particles. With the EL equation for the field and the geometric weak EL equation for particles, the symmetries and conservation laws can be established geometrically. A geometric expression for the particle energy-momentum tensor is derived for the first time, which recovers the non-geometric form in the literature for a chosen coordinate system.