期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Three‑Dimensional Numerical Modeling of Ground Ice Ablation in a Retrogressive Thaw Slump and Its Hydrological Ecosystem Response on the Qinghai‑Tibet Plateau,China
1
作者 Fujun Niu Chenglong Jiao +2 位作者 Jing Luo Junlin he peifeng he 《International Journal of Disaster Risk Science》 SCIE CSCD 2023年第4期566-585,共20页
Retrogressive thaw slumps(RTSs),which frequently occur in permafrost regions of the Qinghai-Tibet Plateau(QTP),China,can cause signifcant damage to the local surface,resulting in material losses and posing a threat to... Retrogressive thaw slumps(RTSs),which frequently occur in permafrost regions of the Qinghai-Tibet Plateau(QTP),China,can cause signifcant damage to the local surface,resulting in material losses and posing a threat to infrastructure and ecosystems in the region.However,quantitative assessment of ground ice ablation and hydrological ecosystem response was limited due to a lack of understanding of the complex hydro-thermal process during RTS development.In this study,we developed a three-dimensional hydro-thermal coupled numerical model of a RTS in the permafrost terrain at the Beilu River Basin of the QTP,including ice–water phase transitions,heat exchange,mass transport,and the parameterized exchange of heat between the active layer and air.Based on the calibrated hydro-thermal model and combined with the electrical resistivity tomography survey and sample analysis results,a method for estimating the melting of ground ice was proposed.Simulation results indicate that the model efectively refects the factual hydro-thermal regime of the RTS and can evaluate the ground ice ablation and total suspended sediment variation,represented by turbidity.Between 2011 and 2021,the maximum simulated ground ice ablation was in 2016 within the slump region,amounting to a total of 492 m^(3),and it induced the reciprocal evolution,especially in the headwall of the RTS.High ponding depression water turbidity values of 28 and 49 occurred in the thawing season in 2021.The simulated ground ice ablation and turbidity events were highly correlated with climatic warming and wetting.The results ofer a valuable approach to assessing the efects of RTS on infrastructure and the environment,especially in the context of a changing climate. 展开更多
关键词 PERMAFROST Retrogressive thaw slump Ground ice ablation Hydrological ecosystem Qinghai-Tibet Plateau
原文传递
Distress Characteristics in Embankment‑Bridge Transition Section of the Qinghai‑Tibet Railway in Permafrost Regions
2
作者 peifeng he Fujun Niu +2 位作者 Yunhui Huang Saize Zhang Chenglong Jiao 《International Journal of Disaster Risk Science》 SCIE CSCD 2023年第4期680-696,共17页
The Qinghai-Tibet Railway has been operating safely for 16 years in the permafrost zone and the railroad subgrade is generally stable by adopting the cooling roadbed techniques.However,settlement caused by the degrada... The Qinghai-Tibet Railway has been operating safely for 16 years in the permafrost zone and the railroad subgrade is generally stable by adopting the cooling roadbed techniques.However,settlement caused by the degradation of subgrade permafrost in the embankment-bridge transition sections(EBTS)is one of the most representative and severe distresses.A feld survey on 440 bridges(including 880 EBTSs)was carried out employing terrestrial laser scanning and ground-penetrating radar for comprehensively assessing all EBTSs in the permafrost zone.The results show that the types of distresses of EBTSs were diferential settlement,upheaval mounds of the protection-cone slopes,subsidence of the protection-cone slopes,surface cracks of the protection cones and longitudinal and transverse dislocation of the wing walls.The occurrence rates of these distresses were 78.93,3.47,11.56,3.36,21.18 and 4.56%,respectively.The most serious problem was diferential settlement,and the average diferential settlement amount(ADSA)was 15.3 cm.Furthermore,the relationships between diferential settlement and 11 infuencing factors were examined.The results indicate that ADSA is greater on the northern side of a bridge than on the southern side and on the sunny slope than on the shady slope.It is also greater in the high-temperature permafrost region than in the low-temperature permafrost region and in the high-ice content area than in the low-ice content area.The EBTSs are more infuenced by ice content than by ground temperature.The ADSA increases when the embankment height increases,the particle size of subgrade soil decreases and the surface vegetation cover decreases. 展开更多
关键词 Distresses Embankment-bridge transition section Permafrost regions Qinghai-Tibet railway
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部