This study aimed to prepare tea tree oil-β-cyclodextrin microcapsules using an optimized co-precipitated method.The impact of the volume fraction of ethanol in the solvent system for microencapsulation on encapsulati...This study aimed to prepare tea tree oil-β-cyclodextrin microcapsules using an optimized co-precipitated method.The impact of the volume fraction of ethanol in the solvent system for microencapsulation on encapsulation efficiency was investigated and analyzed sophisticatedly.Super-high encapsulation efficiency was achieved when a 40%volume fraction of ethanol was used for the microencapsulation procedure,where the recovery yield of microcapsules and the embedding fraction of tea tree oil in microcapsules were as high as 88.3%and 94.3%,respec-tively.Additionally,considering the operation cost,including time and energy consumption,an economical preparation was validated so that it would be viable for large-scale production.Based on the results of morphological and X-ray diffraction analysis,the crystal structure appeared to differ before and after microencapsulation.The results of gas chromatography-mass spectrometry and Fourier transform infrared spectroscopy confirmed the successful formation of microcapsules.Furthermore,the antibacterial activity of the fabricated microcapsules was assessed by a simple growth inhibition test using Bacillus subtilis as the study object,and the hydrophilic property was proved by a water contact angle measurement.展开更多
基金the JST SPRING (Grant No.:JPMJSP2124)for the support of his life and this study.
文摘This study aimed to prepare tea tree oil-β-cyclodextrin microcapsules using an optimized co-precipitated method.The impact of the volume fraction of ethanol in the solvent system for microencapsulation on encapsulation efficiency was investigated and analyzed sophisticatedly.Super-high encapsulation efficiency was achieved when a 40%volume fraction of ethanol was used for the microencapsulation procedure,where the recovery yield of microcapsules and the embedding fraction of tea tree oil in microcapsules were as high as 88.3%and 94.3%,respec-tively.Additionally,considering the operation cost,including time and energy consumption,an economical preparation was validated so that it would be viable for large-scale production.Based on the results of morphological and X-ray diffraction analysis,the crystal structure appeared to differ before and after microencapsulation.The results of gas chromatography-mass spectrometry and Fourier transform infrared spectroscopy confirmed the successful formation of microcapsules.Furthermore,the antibacterial activity of the fabricated microcapsules was assessed by a simple growth inhibition test using Bacillus subtilis as the study object,and the hydrophilic property was proved by a water contact angle measurement.