期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Multi-View & Transfer Learning for Epilepsy Recognition Based on EEG Signals
1
作者 Jiali wang Bing Li +7 位作者 Chengyu Qiu Xinyun Zhang Yuting Cheng peihua wang Ta Zhou Hong Ge Yuanpeng Zhang Jing Cai 《Computers, Materials & Continua》 SCIE EI 2023年第6期4843-4866,共24页
Epilepsy is a central nervous system disorder in which brain activity becomes abnormal.Electroencephalogram(EEG)signals,as recordings of brain activity,have been widely used for epilepsy recognition.To study epilep-ti... Epilepsy is a central nervous system disorder in which brain activity becomes abnormal.Electroencephalogram(EEG)signals,as recordings of brain activity,have been widely used for epilepsy recognition.To study epilep-tic EEG signals and develop artificial intelligence(AI)-assist recognition,a multi-view transfer learning(MVTL-LSR)algorithm based on least squares regression is proposed in this study.Compared with most existing multi-view transfer learning algorithms,MVTL-LSR has two merits:(1)Since traditional transfer learning algorithms leverage knowledge from different sources,which poses a significant risk to data privacy.Therefore,we develop a knowledge transfer mechanism that can protect the security of source domain data while guaranteeing performance.(2)When utilizing multi-view data,we embed view weighting and manifold regularization into the transfer framework to measure the views’strengths and weaknesses and improve generalization ability.In the experimental studies,12 different simulated multi-view&transfer scenarios are constructed from epileptic EEG signals licensed and provided by the Uni-versity of Bonn,Germany.Extensive experimental results show that MVTL-LSR outperforms baselines.The source code will be available on https://github.com/didid5/MVTL-LSR. 展开更多
关键词 Multi-view learning transfer learning least squares regression EPILEPSY EEG signals
下载PDF
鼻瓣区静态参数在鼻腔空间三维模型中的研究
2
作者 陈静怡 汪涛 +4 位作者 王珮华 孙艺渊 薛娜 许晨婕 石润杰 《中华耳鼻咽喉头颈外科杂志》 CSCD 北大核心 2023年第3期206-211,共6页
目的应用Mimics软件对颌面部CT数据进行处理,建立鼻腔空间三维模型,定位鼻瓣区并测量其重要参数,以期为鼻阀功能不良的定量诊断提供依据。方法回顾性纳入2015年1月至2018年12月于上海交通大学医学院附属第九人民医院行颌面部三维CT检查... 目的应用Mimics软件对颌面部CT数据进行处理,建立鼻腔空间三维模型,定位鼻瓣区并测量其重要参数,以期为鼻阀功能不良的定量诊断提供依据。方法回顾性纳入2015年1月至2018年12月于上海交通大学医学院附属第九人民医院行颌面部三维CT检查的无鼻部疾病汉族黄种人32例,其中男性16例、女性16例,年龄20~80岁,<50岁者占50%。重建鼻腔空间三维模型,定位鼻瓣区并测量以下参数:鼻瓣区与鼻骨平面夹角(θ_(INV-B))、单侧鼻瓣区面积(A_(INV-R)、A_(INV-L))、鼻瓣区总面积(AINV)、单侧鼻瓣区高度(HINV-R、HINV-L)、单侧鼻瓣角(α_(INV-R)、α_(INV-L))以及鼻瓣角之和(αINV)。比较本研究所定位鼻瓣区的总面积与既往采用测量平面(垂直硬腭平面与垂直鼻骨平面)所得。分析不同侧别、性别、年龄及种族分组间上述参数的差异。采用SPSS 26及GraphPad Prism 9软件对数据进行统计分析及制图。结果本研究所定位鼻瓣区的总面积为(214.87±52.94)mm^(2),较既往CT测量方法中所采用的垂直硬腭平面[(254.97±47.80)mm^(2)]及垂直鼻骨平面[(226.07±57.36)mm^(2)]上所得偏小。本研究测得的鼻瓣区静态参数如下:θ_(INV-B)为(82.07±7.06)°,A_(INV-R)为(112.66±31.39)mm^(2)、A_(INV-L)为(102.21±27.14)mm^(2),AINV为(214.87±52.94)mm^(2),HINV-R为(24.87±4.62)mm、HINV-L为(24.35±4.86)mm,α_(INV-R)为(20.48±2.99)°、α_(INV-L)为(19.65±3.82)°、αINV为(40.13±6.24)°。右侧较左侧鼻瓣区面积偏大(t=2.33,P<0.05);男性的单侧鼻瓣区高度和右侧、左侧鼻瓣区面积,以及鼻瓣区总面积较女性偏大(t值分别为5.77、3.21、2.91及3.52,P值均<0.01);<50岁人群的鼻瓣区总面积较≥50岁人群的偏大(t=2.83,P<0.01);汉族黄种人的鼻瓣区与鼻骨平面夹角不同于白种人(t=2.92,P<0.01),鼻瓣角较白种人偏大(Z=-6.92,P<0.01),而单侧鼻瓣区高度较白种人偏小(Z=-3.89,P<0.01)。结论本研究在鼻腔空间三维模型中对汉族黄种人鼻瓣区进行定位及参数测量所测得的鼻瓣区总面积小于既往CT测量方法所得,不同性别、年龄组及种族的鼻瓣区参数存在差异。 展开更多
关键词 成像 三维 鼻瓣区 性别 年龄 种族
原文传递
Chemical comparison of Semen Euphorbiae and Semen Euphorbiae Pulveratum by UPLC-Q-TOF/MS coupled with multivariate statistical techniques 被引量:4
3
作者 Huinan wang Jingzhen Zhang +10 位作者 Yuexin Cui Siyu wang Hui Gao Yao Zhang Xinjie wang Ziye Yang Mengyu Chen peihua wang Guimei Zhang Yingzi wang Chao Zhang 《Journal of Chinese Pharmaceutical Sciences》 CAS CSCD 2020年第7期470-479,共10页
In the present study,we aimed to assess the chemical composition changes of Semen Euphorbiae(SE)and Semen Euphorbiae Pulveratum(SEP)by UPLC-Q-TOF/MS and multivariate statistical methods.The UPLC-Q-TOF/MS method and SI... In the present study,we aimed to assess the chemical composition changes of Semen Euphorbiae(SE)and Semen Euphorbiae Pulveratum(SEP)by UPLC-Q-TOF/MS and multivariate statistical methods.The UPLC-Q-TOF/MS method and SIMCA-P software were used to analyze the changes of chemical components of SE and SEP based on PCA and PLS-DA multivariate statistical methods.A"component-target-disease"network model was constructed by Intelligent Platform for Life Sciences of traditional Chinese medicine(TCM)to predict potential related diseases.The differences of chemical composition were significant between SE and SEP.Under positive ion mode,the amounts of Euphorbia factor L2,L3,L7a,L8,L9 and lathyrol were obviously decreased after processing.Under negative ion mode,the amounts of aesculetin,bisaesculetin,ingenol and cetylic acid were increased obviously,while Euphorbia factor L1,L4 and L5 were decreased obviously after processing,and the components of euphobiasteroid,aesculetin,lathyrol and linoleic acid among the 14 differentiated compounds were closely related to the SE-related diseases through the"component-target-disease"network model.UPLC-Q-TOF/MS technology in combination with multivariate statistical methods had certain advantages in studying the complex changes of chemical composition before and after manufacturing pulveratum of SE.It provided a basis for clarifying the toxicity-attenuated mechanisms of SE manufacturing pulveratum,and laid the foundation for its further development and utilization. 展开更多
关键词 Semen Euphorbiae Semen Euphorbiae Pulveratum UPLC-Q-TOF/MS Multivariate statistical techniques Chemical constituents Manufacturing pulveratum
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部