Smart electronic textiles with electronic functions like displaying can provide transformative opportunities for wearable devices that traditional rigid devices are hard to realize.A general strategy of enabling texti...Smart electronic textiles with electronic functions like displaying can provide transformative opportunities for wearable devices that traditional rigid devices are hard to realize.A general strategy of enabling textiles to display is weaving light-emitting fibers into textiles and designing control circuits.However,it remains challenging for the current electronic textiles to display full-color images and videos.Here,we demonstrate a large-area integrated electronic textile system(with a size of 72 cm×50 cm)by weaving light-emitting diode(LED)fibers,touch-sensing fibers and polyester fibers,which could display full-color images(with a gamut of 117.6%NTSC)and continuous videos(with a refresh rate of 11.7 Hz)by designing low-voltage supply mode and parallelly transmitting circuits.After integration of touch-sensing fibers,such textile system could achieve various touch display and interactive functions like smart phones or computers,including hand input of text,hand painting,computing and playing games.The stability and durability of textile system withstanding 5000 bending cycles was also demonstrated for wearable applications.The integrated electronic textile system shows similar flexibility and breathability with regular textiles,which is promising to serve as new human-machine interface to change the way in which people interact with electronics.展开更多
Artificial synapse devices with co-location memory and logic functions have attracted enormous attention since they are the indispensable components for neuromorphic computing systems[1].Extensive efforts have been ma...Artificial synapse devices with co-location memory and logic functions have attracted enormous attention since they are the indispensable components for neuromorphic computing systems[1].Extensive efforts have been made to mimic neural electric pulse patterns through solid-state devices like two-terminal memristors and three-terminal transistors.展开更多
基金supported by the Minstry of Science and Technology(2022YFA1203001,2022YFA1203002 and 2023YFC2410900)the National Natural Science Foundation of China(T2321003,22335003,T2222005 and 22175042)Science&Technology Commission of Shanghai Municipality(21511104900,20JC1414902 and 23490713500).
基金supported by the Ministry of Science and Technology of the People's Republic of China(MOST)(2022YFA1203001,2022YFA1203002)National Natural Science Foundation of China(NSFC)(T2321003,22335003,T2222005,22175042)Science and Technology Commission of Shanghai Municipality(STCSM)(21511104900)。
文摘Smart electronic textiles with electronic functions like displaying can provide transformative opportunities for wearable devices that traditional rigid devices are hard to realize.A general strategy of enabling textiles to display is weaving light-emitting fibers into textiles and designing control circuits.However,it remains challenging for the current electronic textiles to display full-color images and videos.Here,we demonstrate a large-area integrated electronic textile system(with a size of 72 cm×50 cm)by weaving light-emitting diode(LED)fibers,touch-sensing fibers and polyester fibers,which could display full-color images(with a gamut of 117.6%NTSC)and continuous videos(with a refresh rate of 11.7 Hz)by designing low-voltage supply mode and parallelly transmitting circuits.After integration of touch-sensing fibers,such textile system could achieve various touch display and interactive functions like smart phones or computers,including hand input of text,hand painting,computing and playing games.The stability and durability of textile system withstanding 5000 bending cycles was also demonstrated for wearable applications.The integrated electronic textile system shows similar flexibility and breathability with regular textiles,which is promising to serve as new human-machine interface to change the way in which people interact with electronics.
文摘Artificial synapse devices with co-location memory and logic functions have attracted enormous attention since they are the indispensable components for neuromorphic computing systems[1].Extensive efforts have been made to mimic neural electric pulse patterns through solid-state devices like two-terminal memristors and three-terminal transistors.