期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
金属Pd催化NO还原形成NH_(3),N_(2)O和N_(2)的原子机制
1
作者 于沛平 吴宇 +3 位作者 杨昊 谢森 William A.Goddard Ⅲ 程涛 《Chinese Journal of Chemical Physics》 SCIE EI CAS CSCD 2023年第1期94-102,I0034-I0042,I0002,共19页
工业污染物NO是对环境和人类健康的潜在威胁.因此,将NO选择性地催化还原成无害的N_(2)、NH_(3)或N_(2)O气体是非常有意义的.在许多催化剂中,金属钯已被证明在将NO还原为N_(2)的选择性方面是最有效的.然而,NO在Pd上的还原机制,特别是N-N... 工业污染物NO是对环境和人类健康的潜在威胁.因此,将NO选择性地催化还原成无害的N_(2)、NH_(3)或N_(2)O气体是非常有意义的.在许多催化剂中,金属钯已被证明在将NO还原为N_(2)的选择性方面是最有效的.然而,NO在Pd上的还原机制,特别是N-N键的形成途径仍然不清楚,阻碍了新型催化剂的开发.本文基于密度泛函理论的量子力学计算,报道了还原NO形成NH_(3)、N_(2)O和N_(2)的反应路径中的所有基本反应步骤.结果表明,N_(2)O的形成是通过Eley-Rideal反应机制进行的.即在较高的NO^(*)表面覆盖率时,通过将一个吸附的NO^(*)与一个来自溶剂或气相的非吸附的NO结合,形成dimer-(NO)_(2)^(*)中间物,其N-N耦合势垒较低(0.58 eV).发现了dimer-(NO)_(2)^(*)将继续与溶剂中的NO反应,形成N_(2)O,这一点本文发现之前没有报道过.随着NO的消耗和溶剂中N_(2)O^(*)的形成,Langmuir-Hinshelwood(L-H)机制将占主导地位,N_(2)O^(*)将在低化学势垒(0.42 eV)下被还原,从而形成N_(2).相比之下,NH_(3)完全由L-H反应形成,它具有较高的化学势垒(0.87 eV).此外,本文报道了通过在NO^(*)吸附位点掺入另一个金属原子(M)以形成M/Pd,通过考察其对N-N键形成能和N_(2)^(*)结合能的影响,从而实现对产物选择性的调控. 展开更多
关键词 一氧化氮还原 计算模型 电化学反应
下载PDF
Artificial intelligence for the understanding of electrolyte chemistry and electrode interface in lithium battery
2
作者 Yawei Chen yue Liu +8 位作者 Zixu He Liang Xu peiping yu Qintao Sun Wanxia Li yulin Jie Ruiguo Cao Tao Cheng Shuhong Jiao 《National Science Open》 2024年第2期74-97,共24页
Recognizing the critical role of electrolyte chemistry and electrode interfaces in the performance and safety of lithium batteries,along with the urgent need for more sophisticated methods of analysis,this comprehensi... Recognizing the critical role of electrolyte chemistry and electrode interfaces in the performance and safety of lithium batteries,along with the urgent need for more sophisticated methods of analysis,this comprehensive review underscores the promise of machine learning(ML)models in this research field.It explores the application of these innovative methods to studying battery interfaces,particularly focusing on lithium metal anodes.Amid the limitations of traditional experimental techniques,the review supports a hybrid approach that couples experimental and simulation methods,enabling granular insights into the formation process and characteristics of battery interfaces at the molecular level and harnessing AI to extract patterns from voluminous data sets.It showcases the utility of such techniques in electrolyte design and battery life prediction and introduces a novel perspective on battery interface mechanisms.The review concludes by asserting the potential of artificial intelligence(AI)or ML models as invaluable tools in the future of battery research and highlights the importance of fostering confidence in these technologies within the scientific community. 展开更多
关键词 lithium batteries battery interfaces artificial intelligence machine learning electrolyte chemistry
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部