期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A nanocomposite competent to overcome cascade drug resistance in ovarian cancer via mitochondria dysfunction and NO gas synergistic therapy
1
作者 Min Zhong peiqin liang +9 位作者 Zhenzhen Feng Xin Yang Guang Li Rui Sun Lijuan He Jinxiu Tan Yangpengcheng Xiao Zhiqiang Yu Muhua Yi Xuefeng Wang 《Asian Journal of Pharmaceutical Sciences》 SCIE CAS 2023年第6期144-156,共13页
Ovarian cancer(OC)is one of the most common and recurring malignancies in gynecology.Patients with relapsed OC always develop"cascade drug resistance"(CDR)under repeated chemotherapy,leading to subsequent fa... Ovarian cancer(OC)is one of the most common and recurring malignancies in gynecology.Patients with relapsed OC always develop"cascade drug resistance"(CDR)under repeated chemotherapy,leading to subsequent failure of chemotherapy.To overcome this challenge,amphiphiles(P1)carrying a nitric oxide(NO)donor(Isosorbide 5-mononitrate,ISMN)and high-density disulfide are synthesized for encapsulatingmitochondria-targeted tetravalent platinum prodrug(TPt)to construct a nanocomposite(INP@TPt).Mechanism studies indicated that INP@TPt significantly inhibited drug-resistant cells by increasing cellular uptake and mitochondrial accumulation of platinum,depleting glutathione,and preventing apoptosis escape through generating highly toxic peroxynitrite anion(ONOO−).To better replicate the microenvironmental and histological characteristics of the drug resistant primary tumor,an OC patient-derived tumor xenograft(PDXOC)model in BALB/c nude mice was established.INP@TPt showed the best therapeutic effects in the PDXOC model.The corresponding tumor tissues contained high ONOO−levels,which were attributed to the simultaneous release of O_(2)^(·−)and NO in tumor tissues.Taken together,INP@TPtbased systematic strategy showed considerable potential and satisfactory biocompatibility in overcoming platinum CDR,providing practical applications for ovarian therapy. 展开更多
关键词 Cisplatin resistance Patient-derived xenograft model Mitochondrial dysfunction Nitric oxide Ovarian cancer
下载PDF
COX-2 blocking therapy in cisplatin chemosensitization of ovarian cancer:An allicin-based nanomedicine approach
2
作者 Huijiao Fu peiqin liang +8 位作者 Qianwen Chen Yan Wang Guang Li Xuzi Cai Shengtao Wang Kun Chen Shengying Shi Zhiqiang Yu Xuefeng Wang 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第8期449-454,共6页
Recently,the utilization of nonsteroidal anti-inflammatory drugs(NSAIDs)to sensitize cisplatin(CDDP)has gained substantial traction in the treatment of ovarian cancer(OC).However,even widely employed NSAIDs such as ce... Recently,the utilization of nonsteroidal anti-inflammatory drugs(NSAIDs)to sensitize cisplatin(CDDP)has gained substantial traction in the treatment of ovarian cancer(OC).However,even widely employed NSAIDs such as celecoxib and naproxen carry an elevated risk of cardiovascular events,notably throm-bosis.Furthermore,the diminished sensitivity to CDDP therapy in OC is multifactorial,rendering the ap-plication of NSAIDs only partially effective due to their cyclooxygenase-2(COX-2)inhibiting mechanism.Hence,in this study,reactive oxygen species(ROS)-responsive composite nano-hydrangeas loaded with the Chinese medicine small molecule allicin and platinum(IV)prodrug(DTP@AP NPs)were prepared to achieve comprehensive chemosensitization.On one front,allicin achieved COX-2 blocking therapy,en-compassing the inhibition of proliferation,angiogenesis and endothelial mesenchymal transition(EMT),thereby mitigating the adverse impacts of CDDP chemotherapy.Simultaneously,synergistic chemosensi-tization was achieved from multifaceted mechanisms by decreasing CDDP inactivation,damaging mito-chondria and inhibiting DNA repair.In essence,these findings provided an optimized approach for syner-gizing CDDP with COX-2 inhibitors,offering a promising avenue for enhancing OC treatment outcomes. 展开更多
关键词 COX-2 blocking therapy CDDP CHEMOSENSITIZATION ALLICIN Ovarian cancer
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部