期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Natural Cocoons Enabling Flexible and Stable Fabric Lithium–Sulfur Full Batteries 被引量:1
1
作者 Yanan An Chao Luo +7 位作者 Dahua Yao Shujing Wen peitao zheng Shangsen Chi Yu Yang Jian Chang Yonghong Deng Chaoyang Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第5期204-217,共14页
Lithium–sulfur batteries are highly appealing as highenergy power systems and hold great application prospects for flexible and wearable electronics.However,the easy formation of lithium dendrites,shuttle effect of d... Lithium–sulfur batteries are highly appealing as highenergy power systems and hold great application prospects for flexible and wearable electronics.However,the easy formation of lithium dendrites,shuttle effect of dissolved polysulfides,random deposition of insulating lithium sulfides,and poor mechanical flexibility of both electrodes seriously restrict the utilization of lithium and stabilities of lithium and sulfur for practical applications.Herein,we present a cooperative strategy employing silk fibroin/sericin to stabilize flexible lithium–sulfur full batteries by simultaneously inhibiting lithium dendrites,adsorbing liquid polysulfides,and anchoring solid lithium sulfides.Benefiting from the abundant nitrogen-and oxygen-containing functional groups,the carbonized fibroin fabric serves as a lithiophilic fabric host for stabilizing the lithium anode,while the carbonized fibroin fabric and the extracted sericin are used as sulfiphilic hosts and adhesive binders,respectively,for stabilizing the sulfur cathode.Consequently,the assembled Li–S full battery provided a high areal capacity(5.6 mAh cm−2),limited lithium excess(90%),a high volumetric energy density(457.2 Wh L^(−1)),high-capacity retention(99.8%per cycle),and remarkable bending capability(6000 flexing cycles at a small radius of 5 mm). 展开更多
关键词 Lithium-sulfur batteries Flexible batteries Carbonized silk fabric Lithium dendrite Shuttle effect
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部