The effect of molybdenum oxide on the activity and durability of Ce O2-Ti O2 catalyst for NO reduction by NH3 was examined. It was found that the introduction of Mo could improve the low-temperature NH3-SCR activity a...The effect of molybdenum oxide on the activity and durability of Ce O2-Ti O2 catalyst for NO reduction by NH3 was examined. It was found that the introduction of Mo could improve the low-temperature NH3-SCR activity and SO2/H2 O durability of the Ce O2-Ti O2 catalyst and an optimal loading of Mo was 4?wt.%. The best Mo O3/Ce O2-Ti O2 catalyst displayed over 90% NO conversion from 200 °C to 400 °C and obtained 4-fold increase in NO conversion compared to Ce O2-Ti O2 at 150 °C. The characterization results revealed that the number of Br?nsted acid sites over Mo O3/Ce O2-Ti O2 was significantly increased, and the adsorption of nitrate species was dramatically weakened because of the coverage of Mo O3, which were favorable for the high NH3-SCR performance. It is believed that the Mo O3/Ce O2-Ti O2 catalyst is a suitable substitute for the NH3-SCR reaction.展开更多
基金supported by the National Natural Science Foundation of China(21773106,21707066,21677069,and 21806077)the China Postdoctoral Science Foundation(2018M642206)~~
文摘The effect of molybdenum oxide on the activity and durability of Ce O2-Ti O2 catalyst for NO reduction by NH3 was examined. It was found that the introduction of Mo could improve the low-temperature NH3-SCR activity and SO2/H2 O durability of the Ce O2-Ti O2 catalyst and an optimal loading of Mo was 4?wt.%. The best Mo O3/Ce O2-Ti O2 catalyst displayed over 90% NO conversion from 200 °C to 400 °C and obtained 4-fold increase in NO conversion compared to Ce O2-Ti O2 at 150 °C. The characterization results revealed that the number of Br?nsted acid sites over Mo O3/Ce O2-Ti O2 was significantly increased, and the adsorption of nitrate species was dramatically weakened because of the coverage of Mo O3, which were favorable for the high NH3-SCR performance. It is believed that the Mo O3/Ce O2-Ti O2 catalyst is a suitable substitute for the NH3-SCR reaction.