期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A new elastoplastic model for bolt-grouted fractured rock
1
作者 Haoyi Li Shuangying Zuo peiyuan lin 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第7期995-1016,共22页
Complexities in mechanical behaviours of rock masses mainly stem from inherent discontinuities,which calls for advanced bolt-grouting techniques for stability enhancement.Understanding the mechanical properties of bol... Complexities in mechanical behaviours of rock masses mainly stem from inherent discontinuities,which calls for advanced bolt-grouting techniques for stability enhancement.Understanding the mechanical properties of bolt-grouted fractured rock mass(BGFR)and developing accurate prediction methods are crucial to optimize the BGFR support strategies.This paper establishes a new elastoplastic(E-P)model based on the orthotropic and the Mohr-Coulomb(M-C)plastic-yielding criteria.The elastic parameters of the model were derived through a meso-mechanical analysis of composite materials mechanics(CMM).Laboratory BGFR specimens were prepared and uniaxial compression test and variable-angle shear test considering different bolt arrangements were carried out to obtain the mechanical parameters of the specimens.Results showed that the anisotropy of BGFR mainly depends on the relative volume content of each component material in a certain direction.Moreover,the mechanical parameters deduced from the theory of composite materials which consider the short fibre effect are shown to be in good agreement with those determined by laboratory experiments,and the variation rules maintained good consistency.Last,a case study of a real tunnel project is provided to highlight the effectiveness,validity and robustness of the developed E-P model in prediction of stresses and deformations. 展开更多
关键词 Bolt-grouted fractured rock mass Elastoplastic model Composite materials mechanics Laboratory experiment
下载PDF
Performance of reliability-based design formats in geotechnical applications
2
作者 peiyuan lin Xian-Xun Yuan 《Rock Mechanics Bulletin》 2023年第1期44-53,共10页
Geotechnical design codes and guidelines are all switching from traditional factor of safety design to modern load and resistance factor design(LRFD)or partial factor design(PFD),in the belief that the latter two brin... Geotechnical design codes and guidelines are all switching from traditional factor of safety design to modern load and resistance factor design(LRFD)or partial factor design(PFD),in the belief that the latter two bring more flexibility and reliability consistency across various design scenarios,thus produce safe and cost-effective design outcomes.This paper first reviews the LRFD and PFD developed for geotechnical applications.A total of seven methods to calibrate the load and resistance factors are also introduced.The ability of the LRFD and PFD to produce designs with consistent reliability is examined and compared to that of a traditional factor of safety method using two examples of the bearing capacity of strip footings and the global stability of soil nail walls.Results showed that the framework of LRFD offers no apparent advantages over working stress design(WSD)in achieving more consistent reliability for geotechnical structures;the dispersion in design probabilities of failure could be five to seven orders of magnitude difference.The variation will be reduced to three orders if using the PFD.Neither reducing the variability in soil shear strength parameters nor allocating partial resistance factors with respect to soil types would efficiently harmonize the reliability levels when dealing with multiple soil layer conditions.In addition,the uniformity of reliability levels is insensitive to calibrations with or without presetting the load factors.This study provides insights into the LRFD and PFD frameworks currently developed for geotechnical applications. 展开更多
关键词 Load and resistance factor design(LRFD) Partial factor design(PFD) Uniformity of reliability Geotechnical design Reliability-based calibration
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部