Complexities in mechanical behaviours of rock masses mainly stem from inherent discontinuities,which calls for advanced bolt-grouting techniques for stability enhancement.Understanding the mechanical properties of bol...Complexities in mechanical behaviours of rock masses mainly stem from inherent discontinuities,which calls for advanced bolt-grouting techniques for stability enhancement.Understanding the mechanical properties of bolt-grouted fractured rock mass(BGFR)and developing accurate prediction methods are crucial to optimize the BGFR support strategies.This paper establishes a new elastoplastic(E-P)model based on the orthotropic and the Mohr-Coulomb(M-C)plastic-yielding criteria.The elastic parameters of the model were derived through a meso-mechanical analysis of composite materials mechanics(CMM).Laboratory BGFR specimens were prepared and uniaxial compression test and variable-angle shear test considering different bolt arrangements were carried out to obtain the mechanical parameters of the specimens.Results showed that the anisotropy of BGFR mainly depends on the relative volume content of each component material in a certain direction.Moreover,the mechanical parameters deduced from the theory of composite materials which consider the short fibre effect are shown to be in good agreement with those determined by laboratory experiments,and the variation rules maintained good consistency.Last,a case study of a real tunnel project is provided to highlight the effectiveness,validity and robustness of the developed E-P model in prediction of stresses and deformations.展开更多
Geotechnical design codes and guidelines are all switching from traditional factor of safety design to modern load and resistance factor design(LRFD)or partial factor design(PFD),in the belief that the latter two brin...Geotechnical design codes and guidelines are all switching from traditional factor of safety design to modern load and resistance factor design(LRFD)or partial factor design(PFD),in the belief that the latter two bring more flexibility and reliability consistency across various design scenarios,thus produce safe and cost-effective design outcomes.This paper first reviews the LRFD and PFD developed for geotechnical applications.A total of seven methods to calibrate the load and resistance factors are also introduced.The ability of the LRFD and PFD to produce designs with consistent reliability is examined and compared to that of a traditional factor of safety method using two examples of the bearing capacity of strip footings and the global stability of soil nail walls.Results showed that the framework of LRFD offers no apparent advantages over working stress design(WSD)in achieving more consistent reliability for geotechnical structures;the dispersion in design probabilities of failure could be five to seven orders of magnitude difference.The variation will be reduced to three orders if using the PFD.Neither reducing the variability in soil shear strength parameters nor allocating partial resistance factors with respect to soil types would efficiently harmonize the reliability levels when dealing with multiple soil layer conditions.In addition,the uniformity of reliability levels is insensitive to calibrations with or without presetting the load factors.This study provides insights into the LRFD and PFD frameworks currently developed for geotechnical applications.展开更多
基金funded by the National Key Research and Development Plan(No.2022YFC3203200)Department of Science and Technology of Guangdong Province(No.2021ZT09G087)the National Natural Science Foundation Project of China(No.42167025).
文摘Complexities in mechanical behaviours of rock masses mainly stem from inherent discontinuities,which calls for advanced bolt-grouting techniques for stability enhancement.Understanding the mechanical properties of bolt-grouted fractured rock mass(BGFR)and developing accurate prediction methods are crucial to optimize the BGFR support strategies.This paper establishes a new elastoplastic(E-P)model based on the orthotropic and the Mohr-Coulomb(M-C)plastic-yielding criteria.The elastic parameters of the model were derived through a meso-mechanical analysis of composite materials mechanics(CMM).Laboratory BGFR specimens were prepared and uniaxial compression test and variable-angle shear test considering different bolt arrangements were carried out to obtain the mechanical parameters of the specimens.Results showed that the anisotropy of BGFR mainly depends on the relative volume content of each component material in a certain direction.Moreover,the mechanical parameters deduced from the theory of composite materials which consider the short fibre effect are shown to be in good agreement with those determined by laboratory experiments,and the variation rules maintained good consistency.Last,a case study of a real tunnel project is provided to highlight the effectiveness,validity and robustness of the developed E-P model in prediction of stresses and deformations.
基金financial support from the National Natural Science Foundation of China(52008408)the Guangdong Basic and Applied Basic Research Foundation(2021A1515012088)+1 种基金Science and Technology Program of Guangzhou,China(202102021017)the Fundamental Research Funds for the Central Universities,Sun Yat-sen University(22hytd06).
文摘Geotechnical design codes and guidelines are all switching from traditional factor of safety design to modern load and resistance factor design(LRFD)or partial factor design(PFD),in the belief that the latter two bring more flexibility and reliability consistency across various design scenarios,thus produce safe and cost-effective design outcomes.This paper first reviews the LRFD and PFD developed for geotechnical applications.A total of seven methods to calibrate the load and resistance factors are also introduced.The ability of the LRFD and PFD to produce designs with consistent reliability is examined and compared to that of a traditional factor of safety method using two examples of the bearing capacity of strip footings and the global stability of soil nail walls.Results showed that the framework of LRFD offers no apparent advantages over working stress design(WSD)in achieving more consistent reliability for geotechnical structures;the dispersion in design probabilities of failure could be five to seven orders of magnitude difference.The variation will be reduced to three orders if using the PFD.Neither reducing the variability in soil shear strength parameters nor allocating partial resistance factors with respect to soil types would efficiently harmonize the reliability levels when dealing with multiple soil layer conditions.In addition,the uniformity of reliability levels is insensitive to calibrations with or without presetting the load factors.This study provides insights into the LRFD and PFD frameworks currently developed for geotechnical applications.