期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
An efficient geosciences workflow on multi-core processors and GPUs:a case study for aerosol optical depth retrieval from MODIS satellite data
1
作者 Jia Liu Dustin Feld +3 位作者 Yong Xue Jochen Garcke Thomas Soddemann peiyuan pan 《International Journal of Digital Earth》 SCIE EI CSCD 2016年第8期748-765,共18页
Quantitative remote sensing retrieval algorithms help understanding the dynamic aspects of Digital Earth.However,the Big Data and complex models in Digital Earth pose grand challenges for computation infrastructures.I... Quantitative remote sensing retrieval algorithms help understanding the dynamic aspects of Digital Earth.However,the Big Data and complex models in Digital Earth pose grand challenges for computation infrastructures.In this article,taking the aerosol optical depth(AOD)retrieval as a study case,we exploit parallel computing methods for high efficient geophysical parameter retrieval.We present an efficient geocomputation workflow for the AOD calculation from the Moderate Resolution Imaging Spectroradiometer(MODIS)satellite data.According to their individual potential for parallelization,several procedures were adapted and implemented for a successful parallel execution on multicore processors and Graphics Processing Units(GPUs).The benchmarks in this paper validate the high parallel performance of the retrieval workflow with speedups of up to 5.x on a multi-core processor with 8 threads and 43.x on a GPU.To specifically address the time-consuming model retrieval part,hybrid parallel patterns which combine the multicore processor’s and the GPU’s compute power were implemented with static and dynamic workload distributions and evaluated on two systems with different CPU–GPU configurations.It is shown that only the dynamic hybrid implementation leads to a greatly enhanced overall exploitation of the heterogeneous hardware environment in varying circumstances. 展开更多
关键词 Digital earth highperformance computing GPU MULTI-CORE hybrid parallel pattern aerosol optical depth retrieval workflow
原文传递
Performance evaluation of an improved biomass-fired cogeneration system simultaneously using extraction steam, cooling water, and feedwater for heating
2
作者 peiyuan pan Yunyun WU Heng CHEN 《Frontiers in Energy》 SCIE CSCD 2022年第2期321-335,共15页
An advanced cogeneration system based on biomass direct combustion was developed and its feasibility was demonstrated. In place of the traditional single heat source (extraction steam), the extraction steam from the t... An advanced cogeneration system based on biomass direct combustion was developed and its feasibility was demonstrated. In place of the traditional single heat source (extraction steam), the extraction steam from the turbine, the cooling water from the plant condenser, and the low-pressure feedwater from the feedwater preheating system were collectively used for producing district heat in the new scheme. Hence, a remarkable energy-saving effect could be achieved, improving the overall efficiency of the cogeneration system. The thermodynamic and economic performance of the novel system was examined when taking a 35 MW biomass-fired cogeneration unit for case study. Once the biomass feed rate and net thermal production remain constant, an increment of 1.36 MW can be expected in the net electric production, because of the recommended upgrading. Consequently, the total system efficiency and effective electrical efficiency augmented by 1.23 and 1.50 percentage points. The inherent mechanism of performance enhancement was investigated from the energy and exergy aspects. The economic study indicates that the dynamic payback period of the retrofitting project is merely 1.20 years, with a net present value of 5796.0 k$. In conclusion, the proposed concept is validated to be advantageous and profitable. 展开更多
关键词 biomass-fired cogeneration district heat production system absorption heat pump extraction steam cooling water low-pressure feedwater
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部