期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
ZnO-chitosan/Rectorite Nanocomposite Exhibiting High Photocatalytic Activities under Visible-light Irradiation 被引量:1
1
作者 LI Shiqian pen-chi chiang +3 位作者 DING Ling Kinjal JShah CHEN Qinghua CHEN Sheng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2020年第2期310-319,共10页
Chitosan(CS),hydrated zinc acetate,and rectorite(REC) were used as raw materials to prepare CS-embedded zinc oxide(ZnO) nanoparticle by a chemical precipitation process.Hydrogen-bonded REC-loaded ZnO-CS nanoparticle w... Chitosan(CS),hydrated zinc acetate,and rectorite(REC) were used as raw materials to prepare CS-embedded zinc oxide(ZnO) nanoparticle by a chemical precipitation process.Hydrogen-bonded REC-loaded ZnO-CS nanoparticle was to form ZnO-CS/REC nanocomposite photocatalyst,its morphology and structure were analyzed by means of FTIR,XRD,TGA,SEM,and TEM.The effects of the catalyst dosage,methyl orange(MO) initial concentration and solution pH on photocatalytic performance were also discussed.The experimental results show that the ZnO-CS/REC nanocomposite has a particle size of 100 nm with good dispersion and uniformity.Under irradiation of visible light,0.6 g/L photocatalyst was used to degrade MO in solution for 90 min at pH 6,then the MO solution(10 mg/L) was decolored by more than 99%,indicating that the ZnO-CS/REC nanocomposite exhibited highly photocatalytic degradation activity.Therefore,the photodegradation kinetic mechanism of MO in aqueous solution is presumed. 展开更多
关键词 ZnO-Chitosan/rectorite NANOCOMPOSITE VISIBLE-LIGHT methyl orange PHOTODEGRADATION
下载PDF
Enhancement of the polynomial functions response surface model for real-time analyzing ozone sensitivity
2
作者 Jiangbo Jin Yun Zhu +5 位作者 Jicheng Jang Shuxiao Wang Jia Xing pen-chi chiang Shaojia Fan Shicheng Long 《Frontiers of Environmental Science & Engineering》 SCIE EI CAS CSCD 2021年第2期155-168,共14页
Quantification of the nonlinearities between ambient ozone(O3)and the emissions of nitrogen oxides(NOx)and volatile organic compound(VOC)is a prerequisite for an effective O3 control strategy.An Enhanced polynomial fu... Quantification of the nonlinearities between ambient ozone(O3)and the emissions of nitrogen oxides(NOx)and volatile organic compound(VOC)is a prerequisite for an effective O3 control strategy.An Enhanced polynomial functions Response Surface Model(Epf-RSM)with the capability to analyze O3-NOx-VOC sensitivities in real time was developed by integrating the hill-climbing adaptive method into the optimized Extended Response Surface Model(ERSM)system.The Epf-RSM could single out the best suited polynomial function for each grid cell to quantify the responses of O3 concentrations to precursor emission changes.Several comparisons between Epf-RSM and pf-ERSM(polynomial functions based ERSM)were performed using out-of-sample validation,together with comparisons of the spatial distribution and the Empirical Kinetic Modeling Approach diagrams.The comparison results showed that Epf-RSM effectively addressed the drawbacks of pf-ERSM with respect to overfitting in the margin areas and high biases in the transition areas.The O3 concentrations predicted by Epf-RSM agreed well with Community Multi-scale Air Quality simulation results.The case study results in the Pearl River Delta and the north-western area of the Shandong province indicated that the O3 formations in the central areas of both the regions were more sensitive to anthropogenic VOC in January,April,and October,while more NOx-sensitive in July. 展开更多
关键词 Response surface model Hill-climbing algorithm Ozone pollution Precursor emissions Control strategy
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部