An unsymmetrical quantum key distribution protocol is proposed, in which Greenherger-Horne-Zeilinger (GHZ) triplet states are used to obtain the secret key. Except the lost qubits due to the unperfectness of the phy...An unsymmetrical quantum key distribution protocol is proposed, in which Greenherger-Horne-Zeilinger (GHZ) triplet states are used to obtain the secret key. Except the lost qubits due to the unperfectness of the physical devices, the unsymmetrical characteristic makes all transmitted qubits useful. This leads to:an excellent efficiency, which reaches 100% in an ideal case. The 'security is studied from the aspect of information theory. By using the correlation of the GHZ tripartite entanglement state, eavesdropping can be easily checked out, which indicates that the presented protocol is more secure.展开更多
We address the problem of encoding entanglement-assisted (EA) quantum error-correcting codes (QECCs) and of the corresponding complexity. We present an iterative algorithm from which a quantum circuit composed of ...We address the problem of encoding entanglement-assisted (EA) quantum error-correcting codes (QECCs) and of the corresponding complexity. We present an iterative algorithm from which a quantum circuit composed of CNOT, H, and S gates can be derived directly with complexity O(n2) to encode the qubits being sent. Moreover, we derive the number of each gate consumed in our algorithm according to which we can design EA QECCs with low encoding complexity. Another advantage brought by our algorithm is the easiness and efficiency of programming on classical computers.展开更多
基金The project supported by National Natural Science Foundation of China under Grant Nos. 60472018 and 10547125
文摘An unsymmetrical quantum key distribution protocol is proposed, in which Greenherger-Horne-Zeilinger (GHZ) triplet states are used to obtain the secret key. Except the lost qubits due to the unperfectness of the physical devices, the unsymmetrical characteristic makes all transmitted qubits useful. This leads to:an excellent efficiency, which reaches 100% in an ideal case. The 'security is studied from the aspect of information theory. By using the correlation of the GHZ tripartite entanglement state, eavesdropping can be easily checked out, which indicates that the presented protocol is more secure.
基金supported by the National Basic Research Program of China (Grant No.2010CB328300)the National Natural Science Foundation of China (Grant Nos.60972046 and 60902030)+4 种基金the Program for Changjiang Scholars and Innovative Research Team in University (Grant No.IRT0852)the Natural Science Foundation of Shaanxi Province (Grant No.2010JQ8025)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No.20100203120004)the 111 Program (Grant No.B08038)the China Scholarship Council (Grant No.[2008]3019)
文摘We address the problem of encoding entanglement-assisted (EA) quantum error-correcting codes (QECCs) and of the corresponding complexity. We present an iterative algorithm from which a quantum circuit composed of CNOT, H, and S gates can be derived directly with complexity O(n2) to encode the qubits being sent. Moreover, we derive the number of each gate consumed in our algorithm according to which we can design EA QECCs with low encoding complexity. Another advantage brought by our algorithm is the easiness and efficiency of programming on classical computers.