It is hard to treat the underwater weld seam images for the reason of bad brightness, low contrast and less welding seam information, so a new enhancement algorithm is proposed here. Firstly, the high frequency compon...It is hard to treat the underwater weld seam images for the reason of bad brightness, low contrast and less welding seam information, so a new enhancement algorithm is proposed here. Firstly, the high frequency component was separated by Gaussian filter from origin image, and then it is processed by improved local contrast enhancement(LCE) algorithm to enhance the edge information. Secondly, the gamma transform with adaptive parameters was used to strengthen the image brightness, furthermore, contrast limited adaptive histogram equalization(CLAHE) algorithm was applied to enhance the image contrast. Finally, the two manipulated images were integrated together to obtain the desired image. Experiments on typical images were carried out, and evaluation results showed that this designed algorithm can effectively improve image contrast, highlight welding seam information. Moreover, the image average grey value was moderate, and the information entropy and average gradient were much higher than other algorithms.展开更多
基金Project was supported by the National Science Foundation of China(Grant No.51665016)。
文摘It is hard to treat the underwater weld seam images for the reason of bad brightness, low contrast and less welding seam information, so a new enhancement algorithm is proposed here. Firstly, the high frequency component was separated by Gaussian filter from origin image, and then it is processed by improved local contrast enhancement(LCE) algorithm to enhance the edge information. Secondly, the gamma transform with adaptive parameters was used to strengthen the image brightness, furthermore, contrast limited adaptive histogram equalization(CLAHE) algorithm was applied to enhance the image contrast. Finally, the two manipulated images were integrated together to obtain the desired image. Experiments on typical images were carried out, and evaluation results showed that this designed algorithm can effectively improve image contrast, highlight welding seam information. Moreover, the image average grey value was moderate, and the information entropy and average gradient were much higher than other algorithms.