The fascinating properties arising from the interaction between different ferroic states of two-dimensional(2D) materials have inspired tremendous research interest in the past few years.Under the first-principles cal...The fascinating properties arising from the interaction between different ferroic states of two-dimensional(2D) materials have inspired tremendous research interest in the past few years.Under the first-principles calculations,we predict the coexistence of antiferromagnetic and ferroelastic states in VOX(X=Cl,Br,I) monolayers.The results illustrate that the VOX monolayers exhibit indirect bandgap characteristics,i.e.,their gaps decrease with the halide elements changing from Cl to I.The ground states of all these VOX monolayers are antiferromagnetic(AFM) with the magnetic moments contributed by the V 3d electrons.Furthermore,the magnetic ground state changing from AFM to ferromagnetism(FM) can be realized by doping carriers.In addition,the moderate ferroelastic transition barrier and reversible switching signal ensure their high performances of nonvolatile memory devices.Our findings not only offer an ideal platform for investigating the multiferroic properties,but also provide candidate materials for potential applications in spintronics.展开更多
AIM: To investigate and evaluate the pathological features and diagnostic value of focal nodular hyperplasia (FNH) with multiection spiral computed tomography (MSCT) and postprocessing. METHODS: A total of 25 pa...AIM: To investigate and evaluate the pathological features and diagnostic value of focal nodular hyperplasia (FNH) with multiection spiral computed tomography (MSCT) and postprocessing. METHODS: A total of 25 patients with FNH who had undergone MSCT and postprocessing were included in the investigation. All patients had been pathologically or clinically confirmed with FNH. A number of 75 cases of hepatic carcinomas, hemangiomas and adenomas were randomly selected at a same period for a comparative study. RESULTS: There was a single focus in 22 cases and multiple foci in 3 cases. On the plain scan, 17 lesions showed hypodensity, 7 isodensity and 4 hyperdensity (the case with fatty liver). With contrast, 28 lesions were enhanced evenly or in the nodules in the arterial phase; 13 lesions still showed hyperdensity, 11 lesions isodensity and 4 lesions hypodensity in the parenchymatous phase; in the delayed phase only 5 lesions showed hyperdensity but 9 lesions showed isodensity or slight hypodensity and 14 lesions showed hypodensity. Twelve lesions of 28 had central asteroid scars. Thickened feeding arteries in postprocessing were seen in 24 lesions, and were integrated into the parenchymatous lesions with a gradual and smooth course. On the contrary, there were no artery penetrated into the lesion found in any of comparative hepatic tumors. CONCLUSION: Doctors could make a correct diagnosis and differentiation of FNH on evaluation of the characteristic appearance on MSCT with postprocessing,展开更多
The influence of Cr on the initial corrosion behavior of low-alloy steels exposed to a CO2–O2–H2S–SO2 wet–dry corrosion environment was investigated using weight-loss measurements, scanning electron microscopy, N2...The influence of Cr on the initial corrosion behavior of low-alloy steels exposed to a CO2–O2–H2S–SO2 wet–dry corrosion environment was investigated using weight-loss measurements, scanning electron microscopy, N2 adsorption tests, X-ray diffraction analysis, and electrochemical impedance spectroscopy. The results show that the corrosion rate increases with increasing Cr content in samples subjected to corrosion for 21 d. However, the rust grain size decreases, its specific surface area increases, and it becomes more compact and denser with increasing Cr content, which indicates the enhanced protectivity of the rust. The results of charge transfer resistance(Rct) calculations indicate that higher Cr contents can accelerate the corrosion during the first 7 d and promote the formation of the enhanced protective inner rust after 14 d; the formed protective inner rust is responsible for the greater corrosion resistance during long-term exposure.展开更多
BACKGROUND In daily life and work,there are more and more patients with trauma to the hand,which often results in skin and soft tissue defects.Although there are many repair methods,the function and appearance of the ...BACKGROUND In daily life and work,there are more and more patients with trauma to the hand,which often results in skin and soft tissue defects.Although there are many repair methods,the function and appearance of the fingers will be adversely affected if the repair is inadequate.CASE SUMMARY In the present report we describe an 18-year-old male patient whose right hand was mangled by a machine.X-ray imaging showed that a right hand bone(middle finger)was absent and the alignment was poor.After hospitalization,he was diagnosed with a severe right hand injury,skin and soft tissue defects,partial finger defects,and a skin degloving injury.He underwent reconstructive surgery with anterolateral thigh and ilioinguinal flaps.After two repair operations,satisfactory results were obtained,including good fracture healing,good skin flap shape,and good wrist joint function.CONCLUSION This case highlights the good effect of anterolateral thigh and ilioinguinal flaps repair technique on severe palm injury.展开更多
Classifying single-trial electroencephalogram(EEG)based motor imagery(MI)tasks is extensively used to control brain-computer interface(BCI)applications,as a communication bridge between humans and computers.However,th...Classifying single-trial electroencephalogram(EEG)based motor imagery(MI)tasks is extensively used to control brain-computer interface(BCI)applications,as a communication bridge between humans and computers.However,the low signal-to-noise ratio and individual differences of EEG can affect the classification results negatively.In this paper,we propose an improved common spatial pattern(B-CSP)method to extract features for alleviating these adverse effects.First,for different subjects,the method of Bhattacharyya distance is used to select the optimal frequency band of each electrode including strong event-related desynchronization(ERD)and event-related synchronization(ERS)patterns;then the signals of the optimal frequency band are decomposed into spatial patterns,and the features that can describe the maximum differences of two classes of MI are extracted from the EEG data.The proposed method is applied to the public data set and experimental data set to extract features which are input into a back propagation neural network(BPNN)classifier to classify single-trial MI EEG.Another two conventional feature extraction methods,original common spatial pattern(CSP)and autoregressive(AR),are used for comparison.An improved classification performance for both data sets(public data set:91.25%±1.77%for left hand vs.foot and84.50%±5.42%for left hand vs.right hand;experimental data set:90.43%±4.26%for left hand vs.foot)verifies the advantages of the B-CSP method over conventional methods.The results demonstrate that our proposed B-CSP method can classify EEG-based MI tasks effectively,and this study provides practical and theoretical approaches to BCI applications.展开更多
The undissolved phases and carbide precipitation in Ti and Ti-Zr microalloyed low-carbon steels were investigated by scanning electron microscopy, transmission electron microscopy and energy-dispersive X-ray spectrome...The undissolved phases and carbide precipitation in Ti and Ti-Zr microalloyed low-carbon steels were investigated by scanning electron microscopy, transmission electron microscopy and energy-dispersive X-ray spectrometry. At 1225℃, the replacement of Ti by Zr formed Zr2CS and (Zr, Ti)N (the Ti/Zr atomic ratio is 0.11) and reduced the consumption of Ti. At 925℃, it was identified that TiC phases were precipitated at first and Zr was incorporated into the TiC lattice in the subsequent precipitation process, which promoted the precipitation of titanium carbide. The calculation of the interaction coefficient between Ti, C, N and Zr showed that Zr reduced the activity of Ti and C and increased the activity of N in the iron matrix. Therefore, with the addition of Zr, the solubility of Ti was increased, and the consumption of Ti was reduced at high temperature in Ti microalloyed low-carbon steel. The thermodynamic calculation of carbide precipitation transformation showed that the replacement of Ti by Zr increased the nucleation driving force and the nucleation rate of titanium carbide, while the critical core size and the critical nuclear energy were reduced. As the holding time was extended, the Zr/ Ti atomic ratio increased and the size of the precipitates also increased. When the Zr/Ti atomic ratio reached a certain level, the size of the precipitates did not increase with further increase in atomic ratio. When the Zr/Ti atomic ratio in (Ti, Zr)C was 0.05-0.17,(Ti, Zr)C was the most stable carbide and the easiest to nucleate at 925℃. There was more of the (Ti, Zr)C phase than TiC at 925 ℃ after 50 and 100 s, and the time to complete the coarsening behavior of (Ti, Zr)C was shorter than that of TiC.展开更多
The need for bladder reconstruction and side effects of cystoplasty have spawned the demand for the development of alternative material substitutes.Biomaterials such as submucosa of small intestine(SIS)have been widel...The need for bladder reconstruction and side effects of cystoplasty have spawned the demand for the development of alternative material substitutes.Biomaterials such as submucosa of small intestine(SIS)have been widely used as patches for bladder repair,but the outcomes are not fully satisfactory.To capture stem cells in situ has been considered as a promising strategy to speed up the process of re-cellularization and functionalization.In this study,we have developed an anti-CD29 antibody-conjugated SIS scaffold(AC-SIS)which is capable of specifically capturing urine-derived stem cells(USCs)in situ for tissue repair and regeneration.The scaffold has exhibited effective capture capacity and sound biocompatibility.In vivo experiment proved that the AC-SIS scaffold could promote rapid endothelium healing and smooth muscle regeneration.The endogenous stem cell capturing scaffolds has thereby provided a new revenue for developing effective and safer bladder patches.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12104344 and 61674003)the Shandong Provincial Natural Science Foundation,China(Grant No.ZR2021QA096)+1 种基金the Science and Technology Development Program of Weifang High-tech Industrial Development Zone,China(Grant No.2020KJHM03)the Doctoral Research Start-up Foundation of Weifang University,China(Grant No.2021BS05)。
文摘The fascinating properties arising from the interaction between different ferroic states of two-dimensional(2D) materials have inspired tremendous research interest in the past few years.Under the first-principles calculations,we predict the coexistence of antiferromagnetic and ferroelastic states in VOX(X=Cl,Br,I) monolayers.The results illustrate that the VOX monolayers exhibit indirect bandgap characteristics,i.e.,their gaps decrease with the halide elements changing from Cl to I.The ground states of all these VOX monolayers are antiferromagnetic(AFM) with the magnetic moments contributed by the V 3d electrons.Furthermore,the magnetic ground state changing from AFM to ferromagnetism(FM) can be realized by doping carriers.In addition,the moderate ferroelastic transition barrier and reversible switching signal ensure their high performances of nonvolatile memory devices.Our findings not only offer an ideal platform for investigating the multiferroic properties,but also provide candidate materials for potential applications in spintronics.
文摘AIM: To investigate and evaluate the pathological features and diagnostic value of focal nodular hyperplasia (FNH) with multiection spiral computed tomography (MSCT) and postprocessing. METHODS: A total of 25 patients with FNH who had undergone MSCT and postprocessing were included in the investigation. All patients had been pathologically or clinically confirmed with FNH. A number of 75 cases of hepatic carcinomas, hemangiomas and adenomas were randomly selected at a same period for a comparative study. RESULTS: There was a single focus in 22 cases and multiple foci in 3 cases. On the plain scan, 17 lesions showed hypodensity, 7 isodensity and 4 hyperdensity (the case with fatty liver). With contrast, 28 lesions were enhanced evenly or in the nodules in the arterial phase; 13 lesions still showed hyperdensity, 11 lesions isodensity and 4 lesions hypodensity in the parenchymatous phase; in the delayed phase only 5 lesions showed hyperdensity but 9 lesions showed isodensity or slight hypodensity and 14 lesions showed hypodensity. Twelve lesions of 28 had central asteroid scars. Thickened feeding arteries in postprocessing were seen in 24 lesions, and were integrated into the parenchymatous lesions with a gradual and smooth course. On the contrary, there were no artery penetrated into the lesion found in any of comparative hepatic tumors. CONCLUSION: Doctors could make a correct diagnosis and differentiation of FNH on evaluation of the characteristic appearance on MSCT with postprocessing,
文摘The influence of Cr on the initial corrosion behavior of low-alloy steels exposed to a CO2–O2–H2S–SO2 wet–dry corrosion environment was investigated using weight-loss measurements, scanning electron microscopy, N2 adsorption tests, X-ray diffraction analysis, and electrochemical impedance spectroscopy. The results show that the corrosion rate increases with increasing Cr content in samples subjected to corrosion for 21 d. However, the rust grain size decreases, its specific surface area increases, and it becomes more compact and denser with increasing Cr content, which indicates the enhanced protectivity of the rust. The results of charge transfer resistance(Rct) calculations indicate that higher Cr contents can accelerate the corrosion during the first 7 d and promote the formation of the enhanced protective inner rust after 14 d; the formed protective inner rust is responsible for the greater corrosion resistance during long-term exposure.
文摘BACKGROUND In daily life and work,there are more and more patients with trauma to the hand,which often results in skin and soft tissue defects.Although there are many repair methods,the function and appearance of the fingers will be adversely affected if the repair is inadequate.CASE SUMMARY In the present report we describe an 18-year-old male patient whose right hand was mangled by a machine.X-ray imaging showed that a right hand bone(middle finger)was absent and the alignment was poor.After hospitalization,he was diagnosed with a severe right hand injury,skin and soft tissue defects,partial finger defects,and a skin degloving injury.He underwent reconstructive surgery with anterolateral thigh and ilioinguinal flaps.After two repair operations,satisfactory results were obtained,including good fracture healing,good skin flap shape,and good wrist joint function.CONCLUSION This case highlights the good effect of anterolateral thigh and ilioinguinal flaps repair technique on severe palm injury.
基金Project supported by the National Natural Science Foundation of China(Nos.61702454 and 61772468)the MOE Project of Humanities and Social Sciences,China(No.17YJC870018)+1 种基金the Fundamental Research Funds for the Provincial Universities of Zhejiang Province,China(No.GB201901006)the Philosophy and Social Science Planning Fund Project of Zhejiang Province,China(No.20NDQN260YB)
文摘Classifying single-trial electroencephalogram(EEG)based motor imagery(MI)tasks is extensively used to control brain-computer interface(BCI)applications,as a communication bridge between humans and computers.However,the low signal-to-noise ratio and individual differences of EEG can affect the classification results negatively.In this paper,we propose an improved common spatial pattern(B-CSP)method to extract features for alleviating these adverse effects.First,for different subjects,the method of Bhattacharyya distance is used to select the optimal frequency band of each electrode including strong event-related desynchronization(ERD)and event-related synchronization(ERS)patterns;then the signals of the optimal frequency band are decomposed into spatial patterns,and the features that can describe the maximum differences of two classes of MI are extracted from the EEG data.The proposed method is applied to the public data set and experimental data set to extract features which are input into a back propagation neural network(BPNN)classifier to classify single-trial MI EEG.Another two conventional feature extraction methods,original common spatial pattern(CSP)and autoregressive(AR),are used for comparison.An improved classification performance for both data sets(public data set:91.25%±1.77%for left hand vs.foot and84.50%±5.42%for left hand vs.right hand;experimental data set:90.43%±4.26%for left hand vs.foot)verifies the advantages of the B-CSP method over conventional methods.The results demonstrate that our proposed B-CSP method can classify EEG-based MI tasks effectively,and this study provides practical and theoretical approaches to BCI applications.
基金This work was financially supported by the National Natural Science Foundation of China (No. 51761019)the National Key R & D Program of China (Nos. 2017YFB0304700 and 2017YFB0304701).
文摘The undissolved phases and carbide precipitation in Ti and Ti-Zr microalloyed low-carbon steels were investigated by scanning electron microscopy, transmission electron microscopy and energy-dispersive X-ray spectrometry. At 1225℃, the replacement of Ti by Zr formed Zr2CS and (Zr, Ti)N (the Ti/Zr atomic ratio is 0.11) and reduced the consumption of Ti. At 925℃, it was identified that TiC phases were precipitated at first and Zr was incorporated into the TiC lattice in the subsequent precipitation process, which promoted the precipitation of titanium carbide. The calculation of the interaction coefficient between Ti, C, N and Zr showed that Zr reduced the activity of Ti and C and increased the activity of N in the iron matrix. Therefore, with the addition of Zr, the solubility of Ti was increased, and the consumption of Ti was reduced at high temperature in Ti microalloyed low-carbon steel. The thermodynamic calculation of carbide precipitation transformation showed that the replacement of Ti by Zr increased the nucleation driving force and the nucleation rate of titanium carbide, while the critical core size and the critical nuclear energy were reduced. As the holding time was extended, the Zr/ Ti atomic ratio increased and the size of the precipitates also increased. When the Zr/Ti atomic ratio reached a certain level, the size of the precipitates did not increase with further increase in atomic ratio. When the Zr/Ti atomic ratio in (Ti, Zr)C was 0.05-0.17,(Ti, Zr)C was the most stable carbide and the easiest to nucleate at 925℃. There was more of the (Ti, Zr)C phase than TiC at 925 ℃ after 50 and 100 s, and the time to complete the coarsening behavior of (Ti, Zr)C was shorter than that of TiC.
基金supported by the National Natural Science Foundation of China(Grant No.32171351,31771065)National Key Research and Development Program of China(Grant No.2017YFC1104702)the“1.3.5”Project for Disciplines of Excellence,West China Hospital,Sichuan University(Grant No.ZYJC18002).
文摘The need for bladder reconstruction and side effects of cystoplasty have spawned the demand for the development of alternative material substitutes.Biomaterials such as submucosa of small intestine(SIS)have been widely used as patches for bladder repair,but the outcomes are not fully satisfactory.To capture stem cells in situ has been considered as a promising strategy to speed up the process of re-cellularization and functionalization.In this study,we have developed an anti-CD29 antibody-conjugated SIS scaffold(AC-SIS)which is capable of specifically capturing urine-derived stem cells(USCs)in situ for tissue repair and regeneration.The scaffold has exhibited effective capture capacity and sound biocompatibility.In vivo experiment proved that the AC-SIS scaffold could promote rapid endothelium healing and smooth muscle regeneration.The endogenous stem cell capturing scaffolds has thereby provided a new revenue for developing effective and safer bladder patches.