期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Game-theoretical Model for Dynamic Defense Resource Allocation in Cyber-physical Power Systems Under Distributed Denial of Service Attacks
1
作者 Bingjing Yan pengchao yao +2 位作者 Tao Yang Boyang Zhou Qiang Yang 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2024年第1期41-51,共11页
Electric power grids are evolving into complex cyber-physical power systems(CPPSs)that integrate advanced information and communication technologies(ICTs)but face increasing cyberspace threats and attacks.This study c... Electric power grids are evolving into complex cyber-physical power systems(CPPSs)that integrate advanced information and communication technologies(ICTs)but face increasing cyberspace threats and attacks.This study considers CPPS cyberspace security under distributed denial of service(DDoS)attacks and proposes a nonzero-sum game-theoretical model with incomplete information for appropriate allocation of defense resources based on the availability of limited resources.Task time delay is applied to quantify the expected utility as CPPSs have high time requirements and incur massive damage DDoS attacks.Different resource allocation strategies are adopted by attackers and defenders under the three cases of attack-free,failed attack,and successful attack,which lead to a corresponding consumption of resources.A multidimensional node value analysis is designed to introduce physical and cybersecurity indices.Simulation experiments and numerical results demonstrate the effectiveness of the proposed model for the appropriate allocation of defense resources in CPPSs under limited resource availability. 展开更多
关键词 Game theory complex cyber-physical power system(CPPS) multidimensional evaluation distributed denial of service(DDoS)attack
原文传递
Game Theory based Optimal Defensive Resources Allocation with Incomplete Information in Cyber-physical Power Systems against False Data Injection Attacks
2
作者 Bingjing Yan Zhenze Jiang +3 位作者 pengchao yao Qiang Yang Wei Li Albert Y.Zomaya 《Protection and Control of Modern Power Systems》 SCIE EI 2024年第2期115-127,共13页
Modern power grid is fast emerging as a complex cyber-physical power system(CPPS)integrating physical current-carrying components and processes with cyber-embedded computing,which faces increasing cy-berspace security... Modern power grid is fast emerging as a complex cyber-physical power system(CPPS)integrating physical current-carrying components and processes with cyber-embedded computing,which faces increasing cy-berspace security threats and risks.In this paper,the state(i.e.,voltage)offsets resulting from false data injection(FDI)attacks and the bus safety characterization are applied to quantify the attack consequences.The state offsets are obtained by the state estimation method,and the bus safety characterization considers the power net-work topology as well as the vulnerability and connection relationship of buses.Considering the indeterminacy of attacker’s resource consumption and reward,a zero-sum game-theoretical model from the defender’s perspective with incomplete information is explored for the optimal allocation of limited defensive resources.The attacker aims to falsify measurements without triggering threshold alarms to break through the protection,leading to load shedding,over-voltage or under-voltage.The defender attempts to ensure the estimation results to be as close to the actual states as possible,and guarantee the system’s safety and efficient defensive resource utilization.The proposed solution is extensively evaluated through simu-lations using the IEEE 33-bus test network and real-time digital simulator(RTDS)based testbed experiments of the IEEE 14-bus network.The results demonstrate the effec-tiveness of the proposed game-theoretical approach for optimal defensive resource allocation in CPPS when lim-ited resources are available when under FDI attacks.Index Terms—Optimal strategy,game theory,Nash equilibrium,CPPS,FDI attack. 展开更多
关键词 Optimal strategy game theory Nash equilibrium CPPS FDI attack
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部