The development of tin-based devices with low toxicity is critical for the commercial viability of perovskite solar cells.However because tin halide is a stronger Lewis acid,its crystallization rate is extremely fast,...The development of tin-based devices with low toxicity is critical for the commercial viability of perovskite solar cells.However because tin halide is a stronger Lewis acid,its crystallization rate is extremely fast,resulting in the formation of numerous defects that affect the device performance of tin-based perovskite solar cells.Herein,propylamine hydrobromide(PABr)was added to the perovskite precursor solution as an additive to passivate defects and fabricate more uniform and dense perovskite films.Because propylamine cations are too large to enter the perovskite lattices,they only exist at the grain boundary to passivate surface defects and promote crystal growth in a preferred orientation.The PABr additive raises the average short-circuit current density from 19.45 to 25.47 mA·cm^(-2)by reducing carrier recombination induced by defects.Furthermore,the device’s long-term illumination stability is improved after optimization,and the hysteresis effect is negligible.The addition of PABr results in a power conversion efficiency of 9.35%.展开更多
A broadband power amplifier is required to cover the full range of cellular frequency band—from 700 MHz to 2600 MHz—in a base station that supports multiple frequency bands simultaneously. Conventional laterally dif...A broadband power amplifier is required to cover the full range of cellular frequency band—from 700 MHz to 2600 MHz—in a base station that supports multiple frequency bands simultaneously. Conventional laterally diffused metal oxide semiconductor (LDMOS) transistors support narrow band applications up to 3 GHz. However, they cannot operate beyond 1 GHz in broadband applications. GaN transistors have much higher power density and operational frequency compared with LDMOS. Therefore, they are ideal for broadband amplifiers that support multiple bands. Theories for designing broadband amplifiers are introduced in this article, and a 500-2500 MHz 60 W GaN amplifier is discussed.展开更多
基金supported by the Talent Fund of Beijing Jiaotong University (No.2019RC058)the National Natural Science Foundation of China (Nos.62205013,62075009,62275013,and 12274020)。
文摘The development of tin-based devices with low toxicity is critical for the commercial viability of perovskite solar cells.However because tin halide is a stronger Lewis acid,its crystallization rate is extremely fast,resulting in the formation of numerous defects that affect the device performance of tin-based perovskite solar cells.Herein,propylamine hydrobromide(PABr)was added to the perovskite precursor solution as an additive to passivate defects and fabricate more uniform and dense perovskite films.Because propylamine cations are too large to enter the perovskite lattices,they only exist at the grain boundary to passivate surface defects and promote crystal growth in a preferred orientation.The PABr additive raises the average short-circuit current density from 19.45 to 25.47 mA·cm^(-2)by reducing carrier recombination induced by defects.Furthermore,the device’s long-term illumination stability is improved after optimization,and the hysteresis effect is negligible.The addition of PABr results in a power conversion efficiency of 9.35%.
文摘A broadband power amplifier is required to cover the full range of cellular frequency band—from 700 MHz to 2600 MHz—in a base station that supports multiple frequency bands simultaneously. Conventional laterally diffused metal oxide semiconductor (LDMOS) transistors support narrow band applications up to 3 GHz. However, they cannot operate beyond 1 GHz in broadband applications. GaN transistors have much higher power density and operational frequency compared with LDMOS. Therefore, they are ideal for broadband amplifiers that support multiple bands. Theories for designing broadband amplifiers are introduced in this article, and a 500-2500 MHz 60 W GaN amplifier is discussed.