Climate change has led to significant fluctuations in marine ecosystems,including alterations in the structure and function of food webs and ecosystem status.Coastal ecosystems are critical to the functioning of the e...Climate change has led to significant fluctuations in marine ecosystems,including alterations in the structure and function of food webs and ecosystem status.Coastal ecosystems are critical to the functioning of the earth’s lifesupporting systems.However,temporal variations in most of these ecosystems have remained unclear so far.In this study,we employed a linear inverse model with Markov Chain Monte Carlo(LIM-MCMC)combined with ecological network analysis to reveal the temporal variations of the food web in Haizhou Bay of China.Food webs were constructed based on diet composition data in this ecosystem during the year of 2011 and 2018.Results indicated that there were obvious temporal variations in the composition of food webs in autumn of 2011 and 2018.The number of prey and predators for most species in food web decreased in 2018 compared with 2011,especially for Trichiurus lepturus,zooplankton,Amblychaeturichthys hexanema,and Loligo sp.Ecological network analysis showed that the complexity of food web structure could be reflected by comprehensive analysis of compartmentalized indicators.Haizhou Bay ecosystem was more mature and stable in 2011,while the ecosystem’s self-sustainability and recovery from disturbances were accelerated from 2011 to 2018.These findings contribute to our understanding of the dynamics of marine ecosystems and highlight the importance of comprehensive analysis of marine food webs.This work provides a framework for assessing and comparing temporal variations in marine ecosystems,which provides essential information and scientific guidance for the Ecosystem-based Fisheries Management.展开更多
The nutritional composition and overall quality of maize kernels are largely determined by the key chemical com-ponents:protein,oil,and starch.Nevertheless,the genetic basis underlying these nutritional quality traits...The nutritional composition and overall quality of maize kernels are largely determined by the key chemical com-ponents:protein,oil,and starch.Nevertheless,the genetic basis underlying these nutritional quality traits during grainfilling remains poorly understood.In this study,the concentrations of protein,oil,and starch were studied in 204 recombinant inbred lines resulting from a cross between DH1M and T877 at four different stages post-pollination.All the traits exhibited considerable phenotypic variation.During the grain-filling stage,the levels of protein and starch content generally increased,whereas oil content decreased,with significant changes observed between 30 and 40 days after pollination.Quantitative trait locus(QTL)mapping was conducted and a total of 32 QTLs,comprising 14,12,and 6 QTLs for grain protein,oil,and starch content were detected,respectively.Few QTLs were consistently detectable across different time points.By integrating QTL analysis,glo-bal gene expression profiling,and comparative genomics,we identified 157,86,and 54 differentially expressed genes harboring nonsynonymous substitutions between the parental lines for grain protein,oil,and starch con-tent,respectively.Subsequent gene function annotation prioritized 15 candidate genes potentially involved in reg-ulating grain quality traits,including those encoding transcription factors(NAC,MADS-box,bZIP,and MYB),cell wall invertase,cellulose-synthase-like protein,cell division cycle protein,trehalase,auxin-responsive factor,and phloem protein 2-A13.Our study offers significant insights into the genetic architecture of maize kernel nutritional quality and identifies promising QTLs and candidate genes,which are crucial for the genetic enhance-ment of these traits in maize breeding programs.展开更多
Nitrogen(N), phosphorus(P), and potassium(K) are essential macronutrients that are crucial not only for maize growth and development, but also for crop yield and quality. The genetic basis of macronutrient dynamics an...Nitrogen(N), phosphorus(P), and potassium(K) are essential macronutrients that are crucial not only for maize growth and development, but also for crop yield and quality. The genetic basis of macronutrient dynamics and accumulation during grain filling in maize remains largely unknown. In this study, we evaluated grain N, P, and K concentrations in 206 recombinant inbred lines generated from a cross of DH1M and T877 at six time points after pollination. We then calculated conditional phenotypic values at different time intervals to explore the dynamic characteristics of the N, P, and K concentrations. Abundant phenotypic variations were observed in the concentrations and net changes of these nutrients. Unconditional quantitative trait locus(QTL) mapping revealed 41 non-redundant QTLs, including 17, 16, and 14 for the N, P, and K concentrations, respectively. Conditional QTL mapping uncovered 39 non-redundant QTLs related to net changes in the N, P, and K concentrations. By combining QTL, gene expression, co-expression analysis, and comparative genomic data, we identified 44, 36, and 44 candidate genes for the N, P, and K concentrations, respectively, including GRMZM2G371058 encoding a Doftype zinc finger DNA-binding family protein, which was associated with the N concentration, and GRMZM2G113967encoding a CBL-interacting protein kinase, which was related to the K concentration. The results deepen our understanding of the genetic factors controlling N, P, and K accumulation during maize grain development and provide valuable genes for the genetic improvement of nutrient concentrations in maize.展开更多
In a study of DNA methylation changes in melatonin-deficient rice mutants,mutant plants showed premature leaf senescence during grain-filling and reduced grain yield.Melatonin deficiency led to transcriptional reprogr...In a study of DNA methylation changes in melatonin-deficient rice mutants,mutant plants showed premature leaf senescence during grain-filling and reduced grain yield.Melatonin deficiency led to transcriptional reprogramming,especially of genes involved in chlorophyll and carbon metabolism,redox regulation,and transcriptional regulation,during dark-induced leaf senescence.Hypomethylation of mCG and mCHG in the melatonin-deficient rice mutants was associated with the expression change of both protein-coding genes and transposable element-related genes.Changes in gene expression and DNA methylation in the melatonin-deficient mutants were compensated by exogenous application of melatonin.A decreased S-adenosyl-L-methionine level may have contributed to the DNA methylation variations in rice mutants of melatonin deficiency under dark conditions.展开更多
Many experiments have demonstrated that resonant magnetic perturbation(RMP) can affect the turbulent transport at the edge of the tokamak. Through the Experimental Advanced Superconducting Tokamak(EAST) density modula...Many experiments have demonstrated that resonant magnetic perturbation(RMP) can affect the turbulent transport at the edge of the tokamak. Through the Experimental Advanced Superconducting Tokamak(EAST) density modulation experiment, the particle transport coefficients were calculated using the experimental data, and the result shows that the particle transport coefficients increase with RMP. In this study, the six-field two-fluid model in BOUT++ is used to simulate the transport before and after density pump-out induced by RMP,respectively referred as the case without RMP and the case with RMP. In the linear simulations,the instabilities generally decreases for cases with RMP. In the nonlinear simulation, ELM only appears in the case without RMP. Additionally, the particle transport coefficient was analyzed,and the result shows that the particle transport coefficient becomes larger for the case with RMP,which is consistent with the experimental conclusion. Moreover, its magnitude is comparable to the results calculated from experimental data.展开更多
Marine symbiotic fungi represent an intriguing source of discovery of novel secondary metabolites with various biological activities.Sea anemones are benthic marine invertebrates,however,the cultivable symbiotic fungi...Marine symbiotic fungi represent an intriguing source of discovery of novel secondary metabolites with various biological activities.Sea anemones are benthic marine invertebrates,however,the cultivable symbiotic fungi residing in the sea anemones are paid few attentions compared to those derived from their cnidarian counterparts.Here we show the identification of antimicrobial secondary metabolites from the sea anemone-derived symbiotic fungi.Out offive isolated fungal strains,only the strain SMA01 showed strong antimicrobial activities,which was assigned into the genus Emericella based on the morphological characteristics and the ITS sequencing.Media swift from liquid fermentation to solid rice medium presented little influence on its antibacterial activity.A chemical investigation of the ethyl acetate extract of the Emericella sp.SMA01 led to discovery of the primary antibiotic metabolite phenazine-1-carboxylic acid.The IC_(50) values of the phenazine-1-carboxylic acid against Phytophthora capsici,Gibberella zeae,and Verticillium dahliae were determined to be 23.26-53.89μg/mL.To the best of our knowledge,this was the first report of Emericella sp.in sea anemones.The current study may benefit understanding of the defensive chemical interactions between the symbiotic fungi and their host sea anemones.展开更多
Silicon(Si)is regarded as a promising anode material for next-generation lithium-ion batteries due to its ultrahigh theoretical capacity.However,the drastic volume change and the continuous solid electrolyte interphas...Silicon(Si)is regarded as a promising anode material for next-generation lithium-ion batteries due to its ultrahigh theoretical capacity.However,the drastic volume change and the continuous solid electrolyte interphase(SEI)formation during the lithiation/delithiation process seriously hinder its practical application as commercial anodes.Herein,macrocyclic betacyclodextrin(β-CD)has been designed as the diffusion channel for lithium ions at the molecular scale.The diameter of molecular channel is approximately comparable with the solvated lithium ions,which enables the transport of lithium ions and prevents the penetration of solvent molecules.Moreover,the addition ofβ-CD changes the formation behavior of SEI layer and stabilizes the Si nanoparticles.The enhanced electrochemical performances in terms of fast kinetics and improved stability have been achieved.The Si anode with the particularly selected lithium-ion diffusion channel and stabilized SEI layer exhibits a high reversible capability of 2562 m Ah g-1 after 50 cycles at the current density of 500 m A g-1,1944 m Ah g-1 after 200 cycles at the current density of 1 A g-1,and high rate performance.The novel strategy of molecular channel for lithium-ion diffusion offers new insights into the design of alloy-typed anode electrodes with high capacity for lithium-ion batteries.展开更多
As the end products of cellular regulatory processes,metabolites provide the link between genotypes and phenotypes.Althoughmetabolites have been widely applied for functional gene detection and phenotype prediction in...As the end products of cellular regulatory processes,metabolites provide the link between genotypes and phenotypes.Althoughmetabolites have been widely applied for functional gene detection and phenotype prediction in maize,there is little research focusing on the genetic information of metabolites per se.Here,we performed genetic analyses for the kernel metabolites of 11 parental inbred lines of six representative maize varieties,including Zhongdan 2,Danyu 13,Yedan 13,Zhengdan 958,Xianyu 355,and Suyu 16,as well as their 26 reciprocal hybrids.We identified a total of 208 metabolites in maize kernels using untargeted metabolite profiling technology.Both cluster analysis and principal component analysis indicated that kernel metabolites could distinguish hybrids from their parents.Analysis of variance further revealed that 163 metabolites exhibited significant differences between parents and hybrids,and 40 metabolites showed significant differences between reciprocal crosses.We also investigated the genetic effects and heterosis for each metabolite.By taking all hybrids into consideration,about two-thirds of all metabolites displayed overdominant with 36.8%and 31%of them displaying positive overdominant and negative overdominant,respectively.Besides,27.5%and 20.4%of all hybrid combinations showed significant mid-parent heterosis and over-parent heterosis,respectively.Our findings revealed that kernel metabolites exhibited the diversity of relationship between maize hybrids and their parental lines.Additionally,we identified 25 significant metabolicmarkers related to 11 agronomic traits using the LASSO method.Seven metabolic markers were associated with more than one trait simultaneously.These results provide a genetic basis for further utilization of metabolites in the genetic improvement of maize.展开更多
Cortical spreading depression(CSD),which is a significant pathological phenomenon that correlates with migraines and cerebral ischemia,has been characterized by a wave of depolarization among neuronal cells and propag...Cortical spreading depression(CSD),which is a significant pathological phenomenon that correlates with migraines and cerebral ischemia,has been characterized by a wave of depolarization among neuronal cells and propagates across the cortex at a rate of 2–5mm/min.Although the propagation pattern of CSD was well-investigated using high-resolution optical imaging technique,the variation of propagation speed of CSD across different regions of cortex was not well-concerned,partially because of the lack of ideal approach to visualize two-dimensional distribution of propagation speed of CSD over the whole imaged cortex.Here,we have presented a method to compute automatically the propagation speed of CSD throughout every spots in the imaged cortex.In this method,temporal clustering analysis(TCA)and least square estimation(LSE)were first used to detect origin site where CSD was induced.Taking the origin site of CSD as the origin of coordinates,the data matrix of each image was transformed into the corresponding points based on the polar-coordinate representation.Then,two fixed-distance regions of interest(ROIs)are sliding along with the radial coordinate at each polar angle within the image for calculating the time lag with correlating algorithm.Finally,we could draw a twodimensional image,in which the value of each pixel represented the velocity of CSD when it spread through the corresponding area of the imaged cortex.The results demonstrated that the method can reveal the heterogeneity of propagation speed of CSD in the imaged cortex with high fidelity and intuition.展开更多
Stalk strength increases resistance to stalk lodging,which causes maize(Zea mays L.)production losses worldwide.The genetic mechanisms regulating stalk strength remain unclear.In this study,three stalk strength-relate...Stalk strength increases resistance to stalk lodging,which causes maize(Zea mays L.)production losses worldwide.The genetic mechanisms regulating stalk strength remain unclear.In this study,three stalk strength-related traits(rind penetrometer resistance,stalk crushing strength,and stalk bending strength)and four plant architecture traits(plant height,ear height,stem diameter,stem length)were measured in three field trials.Substantial phenotypic variation was detected for these traits.A genome-wide association study(GWAS)was conducted using general and mixed linear models and 372,331 single-nucleotide polymorphisms(SNPs).A total of 94 quantitative trait loci including 241 SNPs were detected.By combining the GWAS data with public gene expression data,56 candidate genes within 50 kb of the significant SNPs were identified,including genes encoding flavonol synthase(GRMZM2G069298,ZmFLS2),nitrate reductase(GRMZM5G878558,ZmNR2),glucose-1-phosphate adenylyltransferase(GRMZM2G027955),and laccase(GRMZM2G447271).Resequencing GRMZM2G069298 and GRMZM5G878558 in all tested lines revealed respectively 47 and 2 variants associated with RPR.Comparison of the RPR of the zmnr2EMS mutant and the wild-type plant under high-and low-nitrogen conditions verified the GRMZM5G878558 function.These findings may be useful for clarifying the genetic basis of stalk strength.The identified candidate genes and variants may be useful for the genetic improvement of maize lodging resistance.展开更多
Genomic selection(GS)is a powerful tool for improving genetic gain in maize breeding.However,its routine application in large-scale breeding pipelines is limited by the high cost of genotyping platforms.Although seque...Genomic selection(GS)is a powerful tool for improving genetic gain in maize breeding.However,its routine application in large-scale breeding pipelines is limited by the high cost of genotyping platforms.Although sequencing-based and array-based genotyping platforms have been used for GS,few studies have compared prediction performance among platforms.In this study,we evaluated the predictabilities of four agronomic traits in 305 maize hybrids derived from 149 parental lines subjected to genotyping by sequencing(GBS),a 40K SNP array,and target sequence capture(TSC)using eight GS models.The GBS marker dataset yielded the highest predictabilities for all traits,followed by TSC and SNP array datasets.We investigated the effect of marker density and statistical models on predictability among genotyping platforms and found that 1K SNPs were sufficient to achieve comparable predictabilities to 10K and all SNPs,and BayesB,GBLUP,and RKHS performed well,while XGBoost performed poorly in most cases.We also selected significant SNP subsets using genome-wide association study(GWAS)analyses in three panels to predict hybrid performance.GWAS facilitated selecting effective SNP subsets for GS and thus reduced genotyping cost,but depended heavily on the GWAS panel.We conclude that there is still room for optimization of the existing SNP array,and using genotyping by target sequencing(GBTS)techniques to integrate a few functional markers identified by GWAS into the 1K SNP array holds great promise of being an effective strategy for developing desirable GS breeding arrays.展开更多
Background Potassium(K)is an essential nutrient for plant growth and development.However,plant fertilization ignoring the soil K level is very likely to cause excessive fertilizer use,and further arouse a series of si...Background Potassium(K)is an essential nutrient for plant growth and development.However,plant fertilization ignoring the soil K level is very likely to cause excessive fertilizer use,and further arouse a series of side effects.This study investigated the response of cotton growth to different soil K levels and the uptake of major nutrients,aiming to evaluate the appropriate K supply level for cotton growth.Using a random block design with 6 soil K levels,we conducted 18 micro-zones field experiments over two continuous years.The soil available K concentration of each treatment was K1(99.77-100.90 mg·kg^(-1)),K2(110.90-111.26 mg·kg^(-1)),K3(123.48-128.88 mg·kg^(-1)),K4(140.13-145.10 mg·kg^(-1)),K5(154.43-155.38 mg·kg^(-1)),and K6(165.77-168.75 mg·kg^(-1)).Cotton nutrient contents,soil nutrient contents,accumulation and distribution of dry matter in cotton were determined,and the relationships between K content in soil and plants and dry matter accumulation were analyzed.Results The soil K content had a significantly positive relationship with dry matter and K accumulation in cotton plants.There were significant differences in dry matter accumulation,single-plant seed cotton yield,mineral nutrient uptake and the proportion of K accumulation in reproductive organs among different soil K levels.The results showed that there was significant difference between K4 and lower K level treatments(K1 and K2),but no significant difference between K4 and higher K level treatments(K5 and K6)in dry matter,single-plant seed cotton yield,or accumulation,distribution and seed cotton production efficiency of N,P and K.Conclusion The soil K level of K4 was able to provide sufficient K for cotton growth in our experiment.Therefore,when the soil K level reached 140.13 mg·kg^(-1),further increasing the soil K concentration no longer had a significant positive effect on cotton growth.展开更多
To the Editor:Anterior chamber(AC)paracentesis is a commonly performed procedure to lower intraocular pressure(IOP),and to sample aqueous humor(AH)for clinical and research purposes.As suggested by an international co...To the Editor:Anterior chamber(AC)paracentesis is a commonly performed procedure to lower intraocular pressure(IOP),and to sample aqueous humor(AH)for clinical and research purposes.As suggested by an international collaboration team,an immediately performed AC paracentesis before an intravitreal injection can also prevent post-injection IOP spike.[1]While IOP could immediately be reduced by AC paracentesis,the procedure of obtaining an AH sample(liquid biopsy)is more complicated.Several methods have been developed to facilitate AH collection and transfer,[2-7]among which a vacuum-based AH collector(SnovoDAHC I-50,Sightnovo Medical Technology Co.,Beijing,China)has better performance than the commonly used insulin syringe in accurate sampling of about 50μL AH in rabbits by one hand.[7]The current clinical trial aimed to evaluate the performance and safety of this product in human subjects.展开更多
Rice(Oryza sativa)provides a staple food source for more than half the world population.However,the current pace of rice breeding in yield growth is insufficient to meet the food demand of the everincreasing global po...Rice(Oryza sativa)provides a staple food source for more than half the world population.However,the current pace of rice breeding in yield growth is insufficient to meet the food demand of the everincreasing global population.Genomic selection(GS)holds a great potential to accelerate breeding progress and is cost-effective via early selection before phenotypes are measured.Previous simulation and experimental studies have demonstrated the usefulness of GS in rice breeding.However,several affecting factors and limitations require careful consideration when performing GS.In this review,we summarize the major genetics and statistical factors affecting predictive performance as well as current progress in the application of GS to rice breeding.We also highlight effective strategies to increase the predictive ability of various models,including GS models incorporating functional markers,genotype by environment interactions,multiple traits,selection index,and multiple omic data.Finally,we envision that integrating GS with other advanced breeding technologies such as unmanned aerial vehicles and open-source breeding platforms will further improve the efficiency and reduce the cost of breeding.展开更多
Recently,abundant resources,low-cost sodium-ion batteries are deemed to the new-generation battery in the field of largescale energy storage.Nevertheless,poor active reaction dynamics,dissolution of intermediates and ...Recently,abundant resources,low-cost sodium-ion batteries are deemed to the new-generation battery in the field of largescale energy storage.Nevertheless,poor active reaction dynamics,dissolution of intermediates and electrolyte matching problems are significant challenges that need to be solved.Herein,dimensional gradient structure of sheet-tube-dots is constructed with CoSe2@CNTs-MXene.Gradient structure is conducive to fast migration of electrons and ions with the association of ether electrolyte.For half-cell,CoSe2@CNTs-MXene exhibits high initial coulomb efficiency(81.7%)and excellent cycling performance(400 mAh g^-1 cycling for 200 times in 2 Ag^−1).Phase transformation pathway from crystalline CoSe2-Na2Se with Co and then amorphous CoSe2 in the discharge/charge process is also explored by in situ X-ray diffraction.Density functional theory study discloses the CoSe2@CNTs-MXene in ether electrolyte system which contributes to stable sodium storage performance owing to the strong adsorption force from hierarchical structure and weak interaction between electrolyte and electrode interface.For full cell,CoSe2@CNTs-MXene//Na3V2(PO4)3/C full battery can also afford a competitively reversible capacity of 280 mAh g^−1 over 50 cycles.Concisely,profiting from dimensional gradient structure and matched electrolyte of CoSe2@CNTs-MXene hold great application potential for stable sodium storage.展开更多
Dissecting the genetic architecture of complex traits is an ongoing challenge for geneticists.Two complementary approaches for genetic mapping,linkage mapping and association mapping have led to successful dissection ...Dissecting the genetic architecture of complex traits is an ongoing challenge for geneticists.Two complementary approaches for genetic mapping,linkage mapping and association mapping have led to successful dissection of complex traits in many crop species.Both of these methods detect quantitative trait loci(QTL) by identifying marker–trait associations,and the only fundamental difference between them is that between mapping populations,which directly determine mapping resolution and power.Based on this difference,we first summarize in this review the advances and limitations of family-based mapping and natural population-based mapping instead of linkage mapping and association mapping.We then describe statistical methods used for improving detection power and computational speed and outline emerging areas such as large-scale meta-analysis for genetic mapping in crops.In the era of next-generation sequencing,there has arisen an urgent need for proper population design,advanced statistical strategies,and precision phenotyping to fully exploit high-throughput genotyping.展开更多
Crown root traits,including crown root angle(CRA),diameter(CRD),and number(CRN),are major determining factors of root system architecture,which influences crop production.In maize,the genetic mechanisms determining cr...Crown root traits,including crown root angle(CRA),diameter(CRD),and number(CRN),are major determining factors of root system architecture,which influences crop production.In maize,the genetic mechanisms determining crown root traits in the field are largely unknown.CRA,CRD,and CRN were evaluated in a recombinant inbred line population in three field trials.High phenotypic variation was observed for crown root traits,and all measured traits showed significant genotype–environment interactions.Singleenvironment(SEA)and multi-environment(MEA)quantitative trait locus(QTL)analyses were conducted for CRA,CRD,and CRN.Of 46 QTL detected by SEA,most explained less than 10%of the phenotypic variation,indicating that a large number of minor-effect QTL contributed to the genetic component of these traits.MEA detected 25 QTL associated with CRA,CRD,and CRN,and 2 and 1 QTL were identified with significant QTL-by-environment interaction effects for CRA and CRD,respectively.A total of 26.1%(12/46)of the QTL identified by SEA were also detected by MEA,with many being detected in more than one environment.These findings contribute to our understanding of the phenotypic and genotypic patterns of crown root traits in different environments.The identified environment-specific QTL and stable QTL may be used to improve root traits in maize breeding.展开更多
Hanbury-Brown-Twiss(HBT) correlations for charged pions in central Au+Au collisions at √SNN=2.4-7.7 GeV(corresponding to beam kinetic energies in the fixed target frame from Elab=1.23 to 30 GeV/nucleon) are calculate...Hanbury-Brown-Twiss(HBT) correlations for charged pions in central Au+Au collisions at √SNN=2.4-7.7 GeV(corresponding to beam kinetic energies in the fixed target frame from Elab=1.23 to 30 GeV/nucleon) are calculated using the ultra-relativistic quantum molecular dynamics model with different equations of state(EoSs).The effects of a phase transition at high baryon densities are clearly observed in the explored HBT parameters.The results show that the available data on the HBT radii,RO/RSand R^(2)_(O)-R^(2)_(S),in the investigated energy region favor a relatively stiff EoS at low beam energies,which then turns into a soft EoS at high collision energies consistent with astrophysical constraints on the high-density EoS of quantum chromodynamics(QCD).The specific effects of two different phase transition scenarios on RO/RSand R^(2)_(O)-R^(2)_(S)are investigated.A phase transition with a significant softening of the EoS below four times the nuclear saturation density can be excluded using HBT data.Our results highlight that the pion’s RO/RSand R^(2)_(O)-R^(2)_(S)are sensitive to the stiffness of the EoS and can be used to constrain and understand the QCD EoS in a high baryon density region.展开更多
Within the framework of the Ultra-relativistic Quantum Molecular Dynamics model,the effects of resonance decay widths,inmedium nucleon-nucleon(in)elastic cross sections,and potentials on the pion Hanbury-Brown-Twiss(H...Within the framework of the Ultra-relativistic Quantum Molecular Dynamics model,the effects of resonance decay widths,inmedium nucleon-nucleon(in)elastic cross sections,and potentials on the pion Hanbury-Brown-Twiss(HBT)intensity interferometry in central Au+Au collisions at Ebeam=1.23 GeV/nucleon are investigated.The results show that the pion emission source is visibly influenced by theΔparticles with small invariant masses,i.e.,with long resonance lifetimes.Furthermore,the pion HBT radii are found to be insensitive to the nucleon-nucleon(in)elastic cross sections,while the measured rapidity distributions of the charged pions are sensitive to the nucleon-nucleon(in)elastic cross sections and can be much better reproduced by considering a reduction factor on the nucleon-nucleon inelastic cross sections.The observed charge-sign difference of the source radii,especially in outward and sideward directions,can be qualitatively explained by simulations with the potential contributions,especially including the Coulomb potential of mesons.The present work demonstrates that the potential updates play important roles in describing the measured HBT radii and duration-time-related radii ratios when understanding the dynamics in relativistic heavy-ion collisions at~GeV beam energies.展开更多
基金The Shandong Provincial Natural Science Foundation under contract No.ZR2023MD096the National Key R&D Program of China under contract Nos 2018YFD0900904 and 2018YFD0900906.
文摘Climate change has led to significant fluctuations in marine ecosystems,including alterations in the structure and function of food webs and ecosystem status.Coastal ecosystems are critical to the functioning of the earth’s lifesupporting systems.However,temporal variations in most of these ecosystems have remained unclear so far.In this study,we employed a linear inverse model with Markov Chain Monte Carlo(LIM-MCMC)combined with ecological network analysis to reveal the temporal variations of the food web in Haizhou Bay of China.Food webs were constructed based on diet composition data in this ecosystem during the year of 2011 and 2018.Results indicated that there were obvious temporal variations in the composition of food webs in autumn of 2011 and 2018.The number of prey and predators for most species in food web decreased in 2018 compared with 2011,especially for Trichiurus lepturus,zooplankton,Amblychaeturichthys hexanema,and Loligo sp.Ecological network analysis showed that the complexity of food web structure could be reflected by comprehensive analysis of compartmentalized indicators.Haizhou Bay ecosystem was more mature and stable in 2011,while the ecosystem’s self-sustainability and recovery from disturbances were accelerated from 2011 to 2018.These findings contribute to our understanding of the dynamics of marine ecosystems and highlight the importance of comprehensive analysis of marine food webs.This work provides a framework for assessing and comparing temporal variations in marine ecosystems,which provides essential information and scientific guidance for the Ecosystem-based Fisheries Management.
基金supported by the Key Research and Development Program of Jiangsu Province(BE2022343)the Seed Industry Revitalization Project of Jiangsu Province(JBGS[2021]009)+2 种基金the National Natural Science Foundation of China(32061143030 and 31972487)Jiangsu Province University Basic Science Research Project(21KJA210002)the Innovative Research Team of Universities in Jiangsu Province,the High-End Talent Project of Yangzhou University,the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),and Qing Lan Project of Jiangsu Province.
文摘The nutritional composition and overall quality of maize kernels are largely determined by the key chemical com-ponents:protein,oil,and starch.Nevertheless,the genetic basis underlying these nutritional quality traits during grainfilling remains poorly understood.In this study,the concentrations of protein,oil,and starch were studied in 204 recombinant inbred lines resulting from a cross between DH1M and T877 at four different stages post-pollination.All the traits exhibited considerable phenotypic variation.During the grain-filling stage,the levels of protein and starch content generally increased,whereas oil content decreased,with significant changes observed between 30 and 40 days after pollination.Quantitative trait locus(QTL)mapping was conducted and a total of 32 QTLs,comprising 14,12,and 6 QTLs for grain protein,oil,and starch content were detected,respectively.Few QTLs were consistently detectable across different time points.By integrating QTL analysis,glo-bal gene expression profiling,and comparative genomics,we identified 157,86,and 54 differentially expressed genes harboring nonsynonymous substitutions between the parental lines for grain protein,oil,and starch con-tent,respectively.Subsequent gene function annotation prioritized 15 candidate genes potentially involved in reg-ulating grain quality traits,including those encoding transcription factors(NAC,MADS-box,bZIP,and MYB),cell wall invertase,cellulose-synthase-like protein,cell division cycle protein,trehalase,auxin-responsive factor,and phloem protein 2-A13.Our study offers significant insights into the genetic architecture of maize kernel nutritional quality and identifies promising QTLs and candidate genes,which are crucial for the genetic enhance-ment of these traits in maize breeding programs.
基金supported by the Seed Industry Revitalization Project of Jiangsu Province,China(JBGS[2021]009)the National Natural Science Foundation of China(32061143030 and 31972487)+3 种基金the Jiangsu Province University Basic Science Research Project,China(21KJA210002)the Key Research and Development Program of Jiangsu Province,China(BE2022343)the Innovative Research Team of Universities in Jiangsu Province,China,the High-end Talent Project of Yangzhou University,China,the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),Chinathe Qing Lan Project of Jiangsu Province,China。
文摘Nitrogen(N), phosphorus(P), and potassium(K) are essential macronutrients that are crucial not only for maize growth and development, but also for crop yield and quality. The genetic basis of macronutrient dynamics and accumulation during grain filling in maize remains largely unknown. In this study, we evaluated grain N, P, and K concentrations in 206 recombinant inbred lines generated from a cross of DH1M and T877 at six time points after pollination. We then calculated conditional phenotypic values at different time intervals to explore the dynamic characteristics of the N, P, and K concentrations. Abundant phenotypic variations were observed in the concentrations and net changes of these nutrients. Unconditional quantitative trait locus(QTL) mapping revealed 41 non-redundant QTLs, including 17, 16, and 14 for the N, P, and K concentrations, respectively. Conditional QTL mapping uncovered 39 non-redundant QTLs related to net changes in the N, P, and K concentrations. By combining QTL, gene expression, co-expression analysis, and comparative genomic data, we identified 44, 36, and 44 candidate genes for the N, P, and K concentrations, respectively, including GRMZM2G371058 encoding a Doftype zinc finger DNA-binding family protein, which was associated with the N concentration, and GRMZM2G113967encoding a CBL-interacting protein kinase, which was related to the K concentration. The results deepen our understanding of the genetic factors controlling N, P, and K accumulation during maize grain development and provide valuable genes for the genetic improvement of nutrient concentrations in maize.
基金supported by the National Natural Science Foundation of China(32100448,32070558,32061143030,32170636)Natural Science Foundation of Jiangsu Province(BK20210799)+2 种基金Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),the Seed Industry Revitalization Project of Jiangsu Province(JBGS[2021]009)the Shanghai Science and Technology Agriculture Project([2022]No.1–6)the Project of Zhongshan Biological Breeding Laboratory(BM2022008-029)。
文摘In a study of DNA methylation changes in melatonin-deficient rice mutants,mutant plants showed premature leaf senescence during grain-filling and reduced grain yield.Melatonin deficiency led to transcriptional reprogramming,especially of genes involved in chlorophyll and carbon metabolism,redox regulation,and transcriptional regulation,during dark-induced leaf senescence.Hypomethylation of mCG and mCHG in the melatonin-deficient rice mutants was associated with the expression change of both protein-coding genes and transposable element-related genes.Changes in gene expression and DNA methylation in the melatonin-deficient mutants were compensated by exogenous application of melatonin.A decreased S-adenosyl-L-methionine level may have contributed to the DNA methylation variations in rice mutants of melatonin deficiency under dark conditions.
基金supported by the National Magnetic Confinement Fusion Program of China(No.2019YFE03090200)by National Natural Science Foundation of China(Nos.11975231,12175277 and 12305249).
文摘Many experiments have demonstrated that resonant magnetic perturbation(RMP) can affect the turbulent transport at the edge of the tokamak. Through the Experimental Advanced Superconducting Tokamak(EAST) density modulation experiment, the particle transport coefficients were calculated using the experimental data, and the result shows that the particle transport coefficients increase with RMP. In this study, the six-field two-fluid model in BOUT++ is used to simulate the transport before and after density pump-out induced by RMP,respectively referred as the case without RMP and the case with RMP. In the linear simulations,the instabilities generally decreases for cases with RMP. In the nonlinear simulation, ELM only appears in the case without RMP. Additionally, the particle transport coefficient was analyzed,and the result shows that the particle transport coefficient becomes larger for the case with RMP,which is consistent with the experimental conclusion. Moreover, its magnitude is comparable to the results calculated from experimental data.
基金Supported by the National Natural Science Foundation of China(Nos.41376004,41406152)the Key Research and Development Project of Shandong Province(No.2018GHY115008)the Youth Innovation Promotion Association of CAS,and the Scientific and Technological Innovation Project(No.2015ASKJ02)。
文摘Marine symbiotic fungi represent an intriguing source of discovery of novel secondary metabolites with various biological activities.Sea anemones are benthic marine invertebrates,however,the cultivable symbiotic fungi residing in the sea anemones are paid few attentions compared to those derived from their cnidarian counterparts.Here we show the identification of antimicrobial secondary metabolites from the sea anemone-derived symbiotic fungi.Out offive isolated fungal strains,only the strain SMA01 showed strong antimicrobial activities,which was assigned into the genus Emericella based on the morphological characteristics and the ITS sequencing.Media swift from liquid fermentation to solid rice medium presented little influence on its antibacterial activity.A chemical investigation of the ethyl acetate extract of the Emericella sp.SMA01 led to discovery of the primary antibiotic metabolite phenazine-1-carboxylic acid.The IC_(50) values of the phenazine-1-carboxylic acid against Phytophthora capsici,Gibberella zeae,and Verticillium dahliae were determined to be 23.26-53.89μg/mL.To the best of our knowledge,this was the first report of Emericella sp.in sea anemones.The current study may benefit understanding of the defensive chemical interactions between the symbiotic fungi and their host sea anemones.
基金financial support by the National Natural Science Foundation of China(51874357,51872333)Innovative Research Group of Hunan Provincial Natural Science Foundation of China(2019JJ10006)+3 种基金the support from the 100 Talented Program of Hunan Province“Huxiang high-level talents”program(2019RS1007)support from Shenghua Scholar Program of Central South Universitysupport from JSPS KAKENNHI(18H03869)
文摘Silicon(Si)is regarded as a promising anode material for next-generation lithium-ion batteries due to its ultrahigh theoretical capacity.However,the drastic volume change and the continuous solid electrolyte interphase(SEI)formation during the lithiation/delithiation process seriously hinder its practical application as commercial anodes.Herein,macrocyclic betacyclodextrin(β-CD)has been designed as the diffusion channel for lithium ions at the molecular scale.The diameter of molecular channel is approximately comparable with the solvated lithium ions,which enables the transport of lithium ions and prevents the penetration of solvent molecules.Moreover,the addition ofβ-CD changes the formation behavior of SEI layer and stabilizes the Si nanoparticles.The enhanced electrochemical performances in terms of fast kinetics and improved stability have been achieved.The Si anode with the particularly selected lithium-ion diffusion channel and stabilized SEI layer exhibits a high reversible capability of 2562 m Ah g-1 after 50 cycles at the current density of 500 m A g-1,1944 m Ah g-1 after 200 cycles at the current density of 1 A g-1,and high rate performance.The novel strategy of molecular channel for lithium-ion diffusion offers new insights into the design of alloy-typed anode electrodes with high capacity for lithium-ion batteries.
基金supported by grants from the National Natural Science Foundation of China(31801028,41801013,31902101)the National Key Research and Development Program of China(2016YFD0100303)+2 种基金Natural Science Foundation of Jiangsu Province(BK20180939)Qing Lan Project of Yangzhou Universitythe Priority Academic Program Development of Jiangsu Higher Education Institutions。
文摘As the end products of cellular regulatory processes,metabolites provide the link between genotypes and phenotypes.Althoughmetabolites have been widely applied for functional gene detection and phenotype prediction in maize,there is little research focusing on the genetic information of metabolites per se.Here,we performed genetic analyses for the kernel metabolites of 11 parental inbred lines of six representative maize varieties,including Zhongdan 2,Danyu 13,Yedan 13,Zhengdan 958,Xianyu 355,and Suyu 16,as well as their 26 reciprocal hybrids.We identified a total of 208 metabolites in maize kernels using untargeted metabolite profiling technology.Both cluster analysis and principal component analysis indicated that kernel metabolites could distinguish hybrids from their parents.Analysis of variance further revealed that 163 metabolites exhibited significant differences between parents and hybrids,and 40 metabolites showed significant differences between reciprocal crosses.We also investigated the genetic effects and heterosis for each metabolite.By taking all hybrids into consideration,about two-thirds of all metabolites displayed overdominant with 36.8%and 31%of them displaying positive overdominant and negative overdominant,respectively.Besides,27.5%and 20.4%of all hybrid combinations showed significant mid-parent heterosis and over-parent heterosis,respectively.Our findings revealed that kernel metabolites exhibited the diversity of relationship between maize hybrids and their parental lines.Additionally,we identified 25 significant metabolicmarkers related to 11 agronomic traits using the LASSO method.Seven metabolic markers were associated with more than one trait simultaneously.These results provide a genetic basis for further utilization of metabolites in the genetic improvement of maize.
基金supported by the grants from the National Natural Science Foundation of China(Grant No.30801482,30800313)the National Postdoctoral Science Foundation of China(20080430-9970)+2 种基金Special Foundation(200902436)the Ph.D.Programs Foundation of Ministry of Education of China(Grant No.20070487058)the National High Technology Research and Development Program of China(Grant No.2007AA02-Z303).
文摘Cortical spreading depression(CSD),which is a significant pathological phenomenon that correlates with migraines and cerebral ischemia,has been characterized by a wave of depolarization among neuronal cells and propagates across the cortex at a rate of 2–5mm/min.Although the propagation pattern of CSD was well-investigated using high-resolution optical imaging technique,the variation of propagation speed of CSD across different regions of cortex was not well-concerned,partially because of the lack of ideal approach to visualize two-dimensional distribution of propagation speed of CSD over the whole imaged cortex.Here,we have presented a method to compute automatically the propagation speed of CSD throughout every spots in the imaged cortex.In this method,temporal clustering analysis(TCA)and least square estimation(LSE)were first used to detect origin site where CSD was induced.Taking the origin site of CSD as the origin of coordinates,the data matrix of each image was transformed into the corresponding points based on the polar-coordinate representation.Then,two fixed-distance regions of interest(ROIs)are sliding along with the radial coordinate at each polar angle within the image for calculating the time lag with correlating algorithm.Finally,we could draw a twodimensional image,in which the value of each pixel represented the velocity of CSD when it spread through the corresponding area of the imaged cortex.The results demonstrated that the method can reveal the heterogeneity of propagation speed of CSD in the imaged cortex with high fidelity and intuition.
基金supported by the National Natural Science Foundation of China(31972487,31902101,32172009 and 32061143030)the Innovative Research Team of Universities in Jiangsu Province,the Science and Technology Development Plan Project of Henan Province(212102110152)+1 种基金the High-end Talent Project of Yangzhou Universitythe Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)。
文摘Stalk strength increases resistance to stalk lodging,which causes maize(Zea mays L.)production losses worldwide.The genetic mechanisms regulating stalk strength remain unclear.In this study,three stalk strength-related traits(rind penetrometer resistance,stalk crushing strength,and stalk bending strength)and four plant architecture traits(plant height,ear height,stem diameter,stem length)were measured in three field trials.Substantial phenotypic variation was detected for these traits.A genome-wide association study(GWAS)was conducted using general and mixed linear models and 372,331 single-nucleotide polymorphisms(SNPs).A total of 94 quantitative trait loci including 241 SNPs were detected.By combining the GWAS data with public gene expression data,56 candidate genes within 50 kb of the significant SNPs were identified,including genes encoding flavonol synthase(GRMZM2G069298,ZmFLS2),nitrate reductase(GRMZM5G878558,ZmNR2),glucose-1-phosphate adenylyltransferase(GRMZM2G027955),and laccase(GRMZM2G447271).Resequencing GRMZM2G069298 and GRMZM5G878558 in all tested lines revealed respectively 47 and 2 variants associated with RPR.Comparison of the RPR of the zmnr2EMS mutant and the wild-type plant under high-and low-nitrogen conditions verified the GRMZM5G878558 function.These findings may be useful for clarifying the genetic basis of stalk strength.The identified candidate genes and variants may be useful for the genetic improvement of maize lodging resistance.
基金supported by grants from the National Natural Science Foundation of China(32061143030,32170636,32100448)the Key Research and Development Program of Jiangsu Province(BE2022343)+6 种基金the Seed Industry Revitalization Project of Jiangsu Province(JBGS[2021]009)Project of Hainan Yazhou Bay Seed Lab(B21HJ0223)the State Key Laboratory of North China Crop Improvement and Regulation(NCCIR2021KF-5,NCCIR2021ZZ-4)Jiangsu Province Agricultural Science and Technology Independent Innovation(CX(21)1003)the Independent Scientific Research Project of the Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding(PLR202102)the Open Funds of the Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding(PL202005)Yangzhou University High-end Talent Support Program,and the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD).
文摘Genomic selection(GS)is a powerful tool for improving genetic gain in maize breeding.However,its routine application in large-scale breeding pipelines is limited by the high cost of genotyping platforms.Although sequencing-based and array-based genotyping platforms have been used for GS,few studies have compared prediction performance among platforms.In this study,we evaluated the predictabilities of four agronomic traits in 305 maize hybrids derived from 149 parental lines subjected to genotyping by sequencing(GBS),a 40K SNP array,and target sequence capture(TSC)using eight GS models.The GBS marker dataset yielded the highest predictabilities for all traits,followed by TSC and SNP array datasets.We investigated the effect of marker density and statistical models on predictability among genotyping platforms and found that 1K SNPs were sufficient to achieve comparable predictabilities to 10K and all SNPs,and BayesB,GBLUP,and RKHS performed well,while XGBoost performed poorly in most cases.We also selected significant SNP subsets using genome-wide association study(GWAS)analyses in three panels to predict hybrid performance.GWAS facilitated selecting effective SNP subsets for GS and thus reduced genotyping cost,but depended heavily on the GWAS panel.We conclude that there is still room for optimization of the existing SNP array,and using genotyping by target sequencing(GBTS)techniques to integrate a few functional markers identified by GWAS into the 1K SNP array holds great promise of being an effective strategy for developing desirable GS breeding arrays.
基金supported by Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciencesthe earmarked fund of China Agricultural Research System of China(CARS-15-11).
文摘Background Potassium(K)is an essential nutrient for plant growth and development.However,plant fertilization ignoring the soil K level is very likely to cause excessive fertilizer use,and further arouse a series of side effects.This study investigated the response of cotton growth to different soil K levels and the uptake of major nutrients,aiming to evaluate the appropriate K supply level for cotton growth.Using a random block design with 6 soil K levels,we conducted 18 micro-zones field experiments over two continuous years.The soil available K concentration of each treatment was K1(99.77-100.90 mg·kg^(-1)),K2(110.90-111.26 mg·kg^(-1)),K3(123.48-128.88 mg·kg^(-1)),K4(140.13-145.10 mg·kg^(-1)),K5(154.43-155.38 mg·kg^(-1)),and K6(165.77-168.75 mg·kg^(-1)).Cotton nutrient contents,soil nutrient contents,accumulation and distribution of dry matter in cotton were determined,and the relationships between K content in soil and plants and dry matter accumulation were analyzed.Results The soil K content had a significantly positive relationship with dry matter and K accumulation in cotton plants.There were significant differences in dry matter accumulation,single-plant seed cotton yield,mineral nutrient uptake and the proportion of K accumulation in reproductive organs among different soil K levels.The results showed that there was significant difference between K4 and lower K level treatments(K1 and K2),but no significant difference between K4 and higher K level treatments(K5 and K6)in dry matter,single-plant seed cotton yield,or accumulation,distribution and seed cotton production efficiency of N,P and K.Conclusion The soil K level of K4 was able to provide sufficient K for cotton growth in our experiment.Therefore,when the soil K level reached 140.13 mg·kg^(-1),further increasing the soil K concentration no longer had a significant positive effect on cotton growth.
文摘To the Editor:Anterior chamber(AC)paracentesis is a commonly performed procedure to lower intraocular pressure(IOP),and to sample aqueous humor(AH)for clinical and research purposes.As suggested by an international collaboration team,an immediately performed AC paracentesis before an intravitreal injection can also prevent post-injection IOP spike.[1]While IOP could immediately be reduced by AC paracentesis,the procedure of obtaining an AH sample(liquid biopsy)is more complicated.Several methods have been developed to facilitate AH collection and transfer,[2-7]among which a vacuum-based AH collector(SnovoDAHC I-50,Sightnovo Medical Technology Co.,Beijing,China)has better performance than the commonly used insulin syringe in accurate sampling of about 50μL AH in rabbits by one hand.[7]The current clinical trial aimed to evaluate the performance and safety of this product in human subjects.
基金supported by the National Natural Science Foundation of China(31801028,32061143030,and 41801013)the National Key Technology Research and Development Program of China(2016YFD0100303)+2 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe Innovative Research Team of Ministry of Agriculturethe Qing-Lan Project of Yangzhou University。
文摘Rice(Oryza sativa)provides a staple food source for more than half the world population.However,the current pace of rice breeding in yield growth is insufficient to meet the food demand of the everincreasing global population.Genomic selection(GS)holds a great potential to accelerate breeding progress and is cost-effective via early selection before phenotypes are measured.Previous simulation and experimental studies have demonstrated the usefulness of GS in rice breeding.However,several affecting factors and limitations require careful consideration when performing GS.In this review,we summarize the major genetics and statistical factors affecting predictive performance as well as current progress in the application of GS to rice breeding.We also highlight effective strategies to increase the predictive ability of various models,including GS models incorporating functional markers,genotype by environment interactions,multiple traits,selection index,and multiple omic data.Finally,we envision that integrating GS with other advanced breeding technologies such as unmanned aerial vehicles and open-source breeding platforms will further improve the efficiency and reduce the cost of breeding.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.U1632151 and 21706048)the Key Research and Development Project of Anhui Province of China(Grant No.1704a0902023)the Open Project of Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices(No.JS1802)。
文摘Recently,abundant resources,low-cost sodium-ion batteries are deemed to the new-generation battery in the field of largescale energy storage.Nevertheless,poor active reaction dynamics,dissolution of intermediates and electrolyte matching problems are significant challenges that need to be solved.Herein,dimensional gradient structure of sheet-tube-dots is constructed with CoSe2@CNTs-MXene.Gradient structure is conducive to fast migration of electrons and ions with the association of ether electrolyte.For half-cell,CoSe2@CNTs-MXene exhibits high initial coulomb efficiency(81.7%)and excellent cycling performance(400 mAh g^-1 cycling for 200 times in 2 Ag^−1).Phase transformation pathway from crystalline CoSe2-Na2Se with Co and then amorphous CoSe2 in the discharge/charge process is also explored by in situ X-ray diffraction.Density functional theory study discloses the CoSe2@CNTs-MXene in ether electrolyte system which contributes to stable sodium storage performance owing to the strong adsorption force from hierarchical structure and weak interaction between electrolyte and electrode interface.For full cell,CoSe2@CNTs-MXene//Na3V2(PO4)3/C full battery can also afford a competitively reversible capacity of 280 mAh g^−1 over 50 cycles.Concisely,profiting from dimensional gradient structure and matched electrolyte of CoSe2@CNTs-MXene hold great application potential for stable sodium storage.
基金supported by the Priority Academic Program Development of Jiangsu Higher Education Institutionthe National Natural Science Foundation of China(Nos.91535103,31391632,and 31200943)+4 种基金the National High Technology Research and Development Program of China(No.2014AA10A601-5)the Natural Science Foundation of Jiangsu Province(No.BK2012261)the Natural Science Foundation of Jiangsu Higher Education Institution(No.14KJA210005)the Postgraduate Research and Innovation Project in Jiangsu Province(No.KYLX151368)the Innovative Research Team of University in Jiangsu Province
文摘Dissecting the genetic architecture of complex traits is an ongoing challenge for geneticists.Two complementary approaches for genetic mapping,linkage mapping and association mapping have led to successful dissection of complex traits in many crop species.Both of these methods detect quantitative trait loci(QTL) by identifying marker–trait associations,and the only fundamental difference between them is that between mapping populations,which directly determine mapping resolution and power.Based on this difference,we first summarize in this review the advances and limitations of family-based mapping and natural population-based mapping instead of linkage mapping and association mapping.We then describe statistical methods used for improving detection power and computational speed and outline emerging areas such as large-scale meta-analysis for genetic mapping in crops.In the era of next-generation sequencing,there has arisen an urgent need for proper population design,advanced statistical strategies,and precision phenotyping to fully exploit high-throughput genotyping.
基金supported by the National Key Research and Development Program of China(2016YFD0100303)the National Natural Science Foundation of China(31972487,31601810,and 31902101)+1 种基金the Natural Science Foundation of Jiangsu Province(BK20180920)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)。
文摘Crown root traits,including crown root angle(CRA),diameter(CRD),and number(CRN),are major determining factors of root system architecture,which influences crop production.In maize,the genetic mechanisms determining crown root traits in the field are largely unknown.CRA,CRD,and CRN were evaluated in a recombinant inbred line population in three field trials.High phenotypic variation was observed for crown root traits,and all measured traits showed significant genotype–environment interactions.Singleenvironment(SEA)and multi-environment(MEA)quantitative trait locus(QTL)analyses were conducted for CRA,CRD,and CRN.Of 46 QTL detected by SEA,most explained less than 10%of the phenotypic variation,indicating that a large number of minor-effect QTL contributed to the genetic component of these traits.MEA detected 25 QTL associated with CRA,CRD,and CRN,and 2 and 1 QTL were identified with significant QTL-by-environment interaction effects for CRA and CRD,respectively.A total of 26.1%(12/46)of the QTL identified by SEA were also detected by MEA,with many being detected in more than one environment.These findings contribute to our understanding of the phenotypic and genotypic patterns of crown root traits in different environments.The identified environment-specific QTL and stable QTL may be used to improve root traits in maize breeding.
基金supported by the National Natural Science Foundation of China(Grant Nos.11875125,and 12075085)financial support from China Scholarship Council(Grant No.202106180053)Samson AG for funding。
文摘Hanbury-Brown-Twiss(HBT) correlations for charged pions in central Au+Au collisions at √SNN=2.4-7.7 GeV(corresponding to beam kinetic energies in the fixed target frame from Elab=1.23 to 30 GeV/nucleon) are calculated using the ultra-relativistic quantum molecular dynamics model with different equations of state(EoSs).The effects of a phase transition at high baryon densities are clearly observed in the explored HBT parameters.The results show that the available data on the HBT radii,RO/RSand R^(2)_(O)-R^(2)_(S),in the investigated energy region favor a relatively stiff EoS at low beam energies,which then turns into a soft EoS at high collision energies consistent with astrophysical constraints on the high-density EoS of quantum chromodynamics(QCD).The specific effects of two different phase transition scenarios on RO/RSand R^(2)_(O)-R^(2)_(S)are investigated.A phase transition with a significant softening of the EoS below four times the nuclear saturation density can be excluded using HBT data.Our results highlight that the pion’s RO/RSand R^(2)_(O)-R^(2)_(S)are sensitive to the stiffness of the EoS and can be used to constrain and understand the QCD EoS in a high baryon density region.
基金supported by the National Natural Science Foundation of China(Grant Nos.11875125,12075085,U2032145,12175170,and12147219)the National Key Research and Development Program of China(Grant No.2020YFE0202002)the financial support from China Scholarship Council(Grant No.202106180053)。
文摘Within the framework of the Ultra-relativistic Quantum Molecular Dynamics model,the effects of resonance decay widths,inmedium nucleon-nucleon(in)elastic cross sections,and potentials on the pion Hanbury-Brown-Twiss(HBT)intensity interferometry in central Au+Au collisions at Ebeam=1.23 GeV/nucleon are investigated.The results show that the pion emission source is visibly influenced by theΔparticles with small invariant masses,i.e.,with long resonance lifetimes.Furthermore,the pion HBT radii are found to be insensitive to the nucleon-nucleon(in)elastic cross sections,while the measured rapidity distributions of the charged pions are sensitive to the nucleon-nucleon(in)elastic cross sections and can be much better reproduced by considering a reduction factor on the nucleon-nucleon inelastic cross sections.The observed charge-sign difference of the source radii,especially in outward and sideward directions,can be qualitatively explained by simulations with the potential contributions,especially including the Coulomb potential of mesons.The present work demonstrates that the potential updates play important roles in describing the measured HBT radii and duration-time-related radii ratios when understanding the dynamics in relativistic heavy-ion collisions at~GeV beam energies.