Electrolyte interface resistance and low ionic conductivity are essential issues for commercializing solid-state lithium metal batteries(SSLMBs).This work details the fabrication of a double-layer solid composite elec...Electrolyte interface resistance and low ionic conductivity are essential issues for commercializing solid-state lithium metal batteries(SSLMBs).This work details the fabrication of a double-layer solid composite electrolyte(DLSCE)for SSLMBs.The composite comprises poly(vinylidene fluoride-co-hexafluoropropylene)(PVDF-HFP)and poly(methyl methacrylate)(PMMA)combined with 10 wt.%of Li_(6.4)La_(3)Zr_(1.4)Ta_(0.6)O_(12)(LLZTO),synthesized through an ultraviolet curing process.The ionic conductivity of the DLSCE(2.6×10^(-4) S·cm^(-1))at room temperature is the high lithium-ion transference number(0.57),and the tensile strength is 17.8 MPa.When this DLSCE was assembled,the resulted LFP/DLSCE/Li battery exhibited excellent rate performance,with the discharge specific capacities of 162.4,146.9,93.6,and 64.0 mA·h·g^(-1) at 0.1,0.2,0.5,and 1 C,respectively.Furthermore,the DLScE demonstrates remarkable stability with lithium metal batteries,facilitating the stable operation of a Li/Li symmetric battery for over 200 h at both 0.1 and 0.2 mA-cm^(-2).Notably,the formation of lithium dendrites is also effectively inhibited during cycling.This work provides a novel design strategy and preparation method for solid composite electrolytes.展开更多
基金supported by the Liuzhou Science and Technology Fund Project(Grant No.2023PRj0103)the National Natural Science Foundation of China(Grant Nos.52161033 and 22262005)+1 种基金the Guangxi Key Laboratory of Automobile Components and Vehicle Technology Fund Project(Grant Nos.2022GKLACVTKF02 and 2023GKLACVTZZ02)the Fund Project of the Key Lab of Guangdong Science and Technology Innovation Strategy Special Fund Project in 2023(Grant No.pdjh2023a0819).
文摘Electrolyte interface resistance and low ionic conductivity are essential issues for commercializing solid-state lithium metal batteries(SSLMBs).This work details the fabrication of a double-layer solid composite electrolyte(DLSCE)for SSLMBs.The composite comprises poly(vinylidene fluoride-co-hexafluoropropylene)(PVDF-HFP)and poly(methyl methacrylate)(PMMA)combined with 10 wt.%of Li_(6.4)La_(3)Zr_(1.4)Ta_(0.6)O_(12)(LLZTO),synthesized through an ultraviolet curing process.The ionic conductivity of the DLSCE(2.6×10^(-4) S·cm^(-1))at room temperature is the high lithium-ion transference number(0.57),and the tensile strength is 17.8 MPa.When this DLSCE was assembled,the resulted LFP/DLSCE/Li battery exhibited excellent rate performance,with the discharge specific capacities of 162.4,146.9,93.6,and 64.0 mA·h·g^(-1) at 0.1,0.2,0.5,and 1 C,respectively.Furthermore,the DLScE demonstrates remarkable stability with lithium metal batteries,facilitating the stable operation of a Li/Li symmetric battery for over 200 h at both 0.1 and 0.2 mA-cm^(-2).Notably,the formation of lithium dendrites is also effectively inhibited during cycling.This work provides a novel design strategy and preparation method for solid composite electrolytes.