The effects of the wall emissivity on aerodynamic heating in a scramjet are analyzed.The supersonic turbulent combustion flow including radiation is solved in the framework of a decoupled strategy where the flow field...The effects of the wall emissivity on aerodynamic heating in a scramjet are analyzed.The supersonic turbulent combustion flow including radiation is solved in the framework of a decoupled strategy where the flow field is determined first and the radiation field next.In particular,a finite difference method is used for solving the flow while a DOM(iscrete ordinates method)approach combined with a WSGGM(weighted sum of gray gases)model is implemented for radiative transfer.Supersonic nonreactive turbulent channel flows are examined for a DLR hydrogen fueled scramjet changing parametrically the wall emissivity.The results indicate that the wall radiative heating rises greatly with increasing the wall emissivity.As the wall emissivity rises,the radiative source and total absorption increase,while the incident radiation decreases apparently.Notably,although the radiative heating can reach a significant level,its contribution to the total aerodynamic heating is relatively limited.展开更多
In this paper,a numerical investigation into a spike-type rotating stall process is carried out considering a transonic compressor rotor(the NASA Rotor 37).Through solution of the Unsteady Reynolds-Averaged Navier-Sto...In this paper,a numerical investigation into a spike-type rotating stall process is carried out considering a transonic compressor rotor(the NASA Rotor 37).Through solution of the Unsteady Reynolds-Averaged Navier-Stokes(URANS)equations,the evolution process from an initially circumferentially-symmetric near-stall flow field to a stable stall condition is simulated without adding any artificial disturbance.At the near-stall operating point,periodic fluctuations are present in the overall flow of the rotor.Moreover,the blockage region in the channel periodically shifts from middle span to the tip.This fluctuating condition does not directly lead to stall,while the full-annulus calculation eventually evolves to stall.Interestingly,a kind of“early disturbance”feature appears in the dynamic signals,which propagates forward ahead of the rotor.展开更多
Bent-housing motor is the most widely used directional drilling tool,but it often encounters the problem of high friction when sliding drilling in horizontal wells.In this paper,a mathematical model is proposed to sim...Bent-housing motor is the most widely used directional drilling tool,but it often encounters the problem of high friction when sliding drilling in horizontal wells.In this paper,a mathematical model is proposed to simulate slide drilling with a friction reduction tool of axial vibration.A term called dynamic effective tractoring force(DETF)is defined and used to evaluate friction reduction effectiveness.The factors influencing the DETF are studied,and the tool placement optimization problem is investigated.The studyfinds that the drilling rate of penetration(ROP)can lower the DETF but does not change the trend of the DETF curve.To effectively work,the shock tool stiffness must be greater than some critical value.For the case study,the best oscillating frequency is within 15∼20 Hz.The reflection of the vibration at the bit boundary can intensify or weaken the friction reduction effec-tiveness,depending on the distance between the hydraulic oscillator and the bit.The optimal placement position corresponds to the plateau stage of the DETF curve.The reliability of the method is verified by thefield tests.The proposed method can provide a design and use guide to hydraulic oscillators and improve friction reduction effectiveness in horizontal wells.展开更多
Computational fluid dynamics(CFD)has become the main method for the prediction of the properties of the external wind environment in cities and other urban contexts.A review is presented of the existing literature in ...Computational fluid dynamics(CFD)has become the main method for the prediction of the properties of the external wind environment in cities and other urban contexts.A review is presented of the existing literature in terms of boundary conditions,building models,computational domains,computational grids,and turbulence models.Some specific issues,such as the accuracy/computational cost ratio and the exploitation of existing empirical correlations,are also examined.展开更多
This study demonstrates that magnetron-sputtered NbSe_(2)film can be used as a lubricant for space current-carrying sliding contact,which accommodates both metal-like conductivity and MoS_(2)-like lubricity.Deposition...This study demonstrates that magnetron-sputtered NbSe_(2)film can be used as a lubricant for space current-carrying sliding contact,which accommodates both metal-like conductivity and MoS_(2)-like lubricity.Deposition at low pressure and low energy is performed to avoid the generation of the interference phase of NbSe_(3).The composition,microstructure,and properties of the NbSe_(2)films are further tailored by controlling the sputtering current.At an appropriate current,the film changed from amorphous to crystalline,maintained a dense structure,and exhibited excellent comprehensive properties.Compared to the currently available electrical contact lubricating materials,the NbSe_(2)film exhibits a significant advantage under the combined vacuum and current-carrying conditions.The friction coefficient decreases from 0.25 to 0.02,the wear life increases more than seven times,and the electric noise reduces approximately 50%.展开更多
Developing an effective and durable antibacterial surface is important for surgical tools and biomedical implants.In this work,a zwitterionic copolymer containing catechol groups as biomimetic anchoring segments was c...Developing an effective and durable antibacterial surface is important for surgical tools and biomedical implants.In this work,a zwitterionic copolymer containing catechol groups as biomimetic anchoring segments was coated onto 316 L stainless steel via drop-casting.Energy-dispersive X-ray spectroscopy(EDS)and water contact angle(WCA)measurements indicated that the coatings made of the copolymers containing zwitterionic and dopamine segments at the molar ratios of 8:2 and 6:4 exhibited stronger stability and mechanical durability than the one at 9:1 after inducing tape-peeling and ultrasonication damage.The mechanically durable nanocoatings exhibited excellent antibacterial performance against Staphylococcus aureus and Escherichia coli in a period of 3 days.The nanocoatings with zwitterionic and dopamine segments at the molar ratio of 8:2 were further evaluated and demonstrated durable antibacterial performance after tape-peeling and ultrasonication treatments.展开更多
The effect of thermoacidophilic archaeon Metallosphaera cuprina(M.cuprina)on the corrosion of Q235 carbon steel in its culture medium was investigated in this work.In the sterile culture medium,the carbon steels showe...The effect of thermoacidophilic archaeon Metallosphaera cuprina(M.cuprina)on the corrosion of Q235 carbon steel in its culture medium was investigated in this work.In the sterile culture medium,the carbon steels showed uniform corrosion morphologies and almost no corrosion products covered the sample surface during 14 days of immersion test.In the presence of M.cuprina,some corrosion pits appeared on the surface of carbon steels in the immersion test,exhibiting typical localized corrosion morphologies.Moreover,the sample surfaces were covered by a large number of insoluble precipitates during the immersion.After 14 days,the thickness of precipitates reached approximately 50μm.The results of weight loss test and electrochemical test demonstrated that the carbon steels in the M.cuprina-inoculated culture medium had higher corrosion rate than that in the sterile culture medium.The oxygen concentration cell caused by M.cuprina biofilms resulted in localized corrosion behavior,and the ferrous oxidation ability of M.cuprina accelerated the anodic dissolution of carbon steels,thus promoting the corrosion process of carbon steels.展开更多
文摘The effects of the wall emissivity on aerodynamic heating in a scramjet are analyzed.The supersonic turbulent combustion flow including radiation is solved in the framework of a decoupled strategy where the flow field is determined first and the radiation field next.In particular,a finite difference method is used for solving the flow while a DOM(iscrete ordinates method)approach combined with a WSGGM(weighted sum of gray gases)model is implemented for radiative transfer.Supersonic nonreactive turbulent channel flows are examined for a DLR hydrogen fueled scramjet changing parametrically the wall emissivity.The results indicate that the wall radiative heating rises greatly with increasing the wall emissivity.As the wall emissivity rises,the radiative source and total absorption increase,while the incident radiation decreases apparently.Notably,although the radiative heating can reach a significant level,its contribution to the total aerodynamic heating is relatively limited.
基金This work was supported by the National Natural Science Foundation of China(No.51976139)the Shandong Provincial Natural Science Foundation,China(No.ZR2019QA018).
文摘In this paper,a numerical investigation into a spike-type rotating stall process is carried out considering a transonic compressor rotor(the NASA Rotor 37).Through solution of the Unsteady Reynolds-Averaged Navier-Stokes(URANS)equations,the evolution process from an initially circumferentially-symmetric near-stall flow field to a stable stall condition is simulated without adding any artificial disturbance.At the near-stall operating point,periodic fluctuations are present in the overall flow of the rotor.Moreover,the blockage region in the channel periodically shifts from middle span to the tip.This fluctuating condition does not directly lead to stall,while the full-annulus calculation eventually evolves to stall.Interestingly,a kind of“early disturbance”feature appears in the dynamic signals,which propagates forward ahead of the rotor.
文摘Bent-housing motor is the most widely used directional drilling tool,but it often encounters the problem of high friction when sliding drilling in horizontal wells.In this paper,a mathematical model is proposed to simulate slide drilling with a friction reduction tool of axial vibration.A term called dynamic effective tractoring force(DETF)is defined and used to evaluate friction reduction effectiveness.The factors influencing the DETF are studied,and the tool placement optimization problem is investigated.The studyfinds that the drilling rate of penetration(ROP)can lower the DETF but does not change the trend of the DETF curve.To effectively work,the shock tool stiffness must be greater than some critical value.For the case study,the best oscillating frequency is within 15∼20 Hz.The reflection of the vibration at the bit boundary can intensify or weaken the friction reduction effec-tiveness,depending on the distance between the hydraulic oscillator and the bit.The optimal placement position corresponds to the plateau stage of the DETF curve.The reliability of the method is verified by thefield tests.The proposed method can provide a design and use guide to hydraulic oscillators and improve friction reduction effectiveness in horizontal wells.
基金This work was supported by the National Natural Science Foundation of China(No.51976139).
文摘Computational fluid dynamics(CFD)has become the main method for the prediction of the properties of the external wind environment in cities and other urban contexts.A review is presented of the existing literature in terms of boundary conditions,building models,computational domains,computational grids,and turbulence models.Some specific issues,such as the accuracy/computational cost ratio and the exploitation of existing empirical correlations,are also examined.
基金The authors are grateful to the National Natural Science Foundation of China(Grant No.51775537)Youth Innovation Promotion Association of Chinese Academy of Sciences(Grant No.Y202084)for financial support.
文摘This study demonstrates that magnetron-sputtered NbSe_(2)film can be used as a lubricant for space current-carrying sliding contact,which accommodates both metal-like conductivity and MoS_(2)-like lubricity.Deposition at low pressure and low energy is performed to avoid the generation of the interference phase of NbSe_(3).The composition,microstructure,and properties of the NbSe_(2)films are further tailored by controlling the sputtering current.At an appropriate current,the film changed from amorphous to crystalline,maintained a dense structure,and exhibited excellent comprehensive properties.Compared to the currently available electrical contact lubricating materials,the NbSe_(2)film exhibits a significant advantage under the combined vacuum and current-carrying conditions.The friction coefficient decreases from 0.25 to 0.02,the wear life increases more than seven times,and the electric noise reduces approximately 50%.
基金financially supported by the National Natural Science Foundation of China(Nos.51771029 and 51771122)the Shanghai International Science and Technology Cooperation Project(No.17520731800)the China Postdoctoral Science Foundation(No.2019M660453)。
文摘Developing an effective and durable antibacterial surface is important for surgical tools and biomedical implants.In this work,a zwitterionic copolymer containing catechol groups as biomimetic anchoring segments was coated onto 316 L stainless steel via drop-casting.Energy-dispersive X-ray spectroscopy(EDS)and water contact angle(WCA)measurements indicated that the coatings made of the copolymers containing zwitterionic and dopamine segments at the molar ratios of 8:2 and 6:4 exhibited stronger stability and mechanical durability than the one at 9:1 after inducing tape-peeling and ultrasonication damage.The mechanically durable nanocoatings exhibited excellent antibacterial performance against Staphylococcus aureus and Escherichia coli in a period of 3 days.The nanocoatings with zwitterionic and dopamine segments at the molar ratio of 8:2 were further evaluated and demonstrated durable antibacterial performance after tape-peeling and ultrasonication treatments.
基金supported by the National Natural Science Foundation of China(No.52001021)the China Postdoctoral Science Foundation(No.2019M660453)the Postdoctoral Research Foundation of Shunde Graduate School of University of Science and Technology Beijing(No.2020BH009)。
文摘The effect of thermoacidophilic archaeon Metallosphaera cuprina(M.cuprina)on the corrosion of Q235 carbon steel in its culture medium was investigated in this work.In the sterile culture medium,the carbon steels showed uniform corrosion morphologies and almost no corrosion products covered the sample surface during 14 days of immersion test.In the presence of M.cuprina,some corrosion pits appeared on the surface of carbon steels in the immersion test,exhibiting typical localized corrosion morphologies.Moreover,the sample surfaces were covered by a large number of insoluble precipitates during the immersion.After 14 days,the thickness of precipitates reached approximately 50μm.The results of weight loss test and electrochemical test demonstrated that the carbon steels in the M.cuprina-inoculated culture medium had higher corrosion rate than that in the sterile culture medium.The oxygen concentration cell caused by M.cuprina biofilms resulted in localized corrosion behavior,and the ferrous oxidation ability of M.cuprina accelerated the anodic dissolution of carbon steels,thus promoting the corrosion process of carbon steels.