Understanding the regulatory networks for germ cell fate specification is necessary to developing strategies for improving the efficiency of germ cell production in vitro.In this study,we developed a coupled screening...Understanding the regulatory networks for germ cell fate specification is necessary to developing strategies for improving the efficiency of germ cell production in vitro.In this study,we developed a coupled screening strategy that took advantage of an arrayed bi-molecular fluorescence complementation(BiFC)platform for protein-protein interaction screens and epiblast-like cell(EpiLC)-induction assays using reporter mouse embryonic stem cells(mESCs).Investigation of candidate interaction partners of core human pluripotent factors OCT4,NANOG,KLF4 and SOX2 in EpiLC differentiation assays identified novel primordial germ cell(PGC)-inducing factors including BEN-domain(BEND/Bend)family members.Through RNA-seq,ChIP-seq,and ATAC-seq analyses,we showed that Bend5 worked together with Bend4 and helped mark chromatin boundaries to promote EpiLC induction in vitro.Our findings suggest that BEND/Bend proteins represent a new family of transcriptional modulators and chromatin boundary factors that participate in gene expression regulation during early germline development.展开更多
Polycomb group(PcG)ring finger protein 6(PCGF6),though known as a member of the transcription-re-pressing complexes,PcG,also has activation function in regulating pluripotency gene expression.However,the mechanism und...Polycomb group(PcG)ring finger protein 6(PCGF6),though known as a member of the transcription-re-pressing complexes,PcG,also has activation function in regulating pluripotency gene expression.However,the mechanism underlying the activation function of PCGF6 is poorly understood.Here,we found that PCGF6 co-localizes to gene activation regions along with pluripotency factors such as OCT4.In addition,PCGF6 was recruited to a subset of the super-enhancer(SE)regions upstream of cell cycle-associated genes by OCT4,and increased their expression.By combining with promoter capture Hi-C data,we found that PCGF6 activates cell cycle genes by regulating SE-promoter interactions via 3D chromatin.Our fin dings highlight a novel mechanism of PcG protein in regulating pluripotency,and provide a research basis for the therapeutic application of pluripotent stem cells.展开更多
基金the National Key R&D Program of China(2017YFA0102801)The National Natural Science Foundation of China(Grant Nos.31930058,31671540,32170802,and 31301082)+1 种基金Natural Science Foundation of Guangdong Province(2015B020228002,2017A030313093)Guangdong Basic and Applied Basic Research Foundation(2019A1515011422,2021A1515010759).
文摘Understanding the regulatory networks for germ cell fate specification is necessary to developing strategies for improving the efficiency of germ cell production in vitro.In this study,we developed a coupled screening strategy that took advantage of an arrayed bi-molecular fluorescence complementation(BiFC)platform for protein-protein interaction screens and epiblast-like cell(EpiLC)-induction assays using reporter mouse embryonic stem cells(mESCs).Investigation of candidate interaction partners of core human pluripotent factors OCT4,NANOG,KLF4 and SOX2 in EpiLC differentiation assays identified novel primordial germ cell(PGC)-inducing factors including BEN-domain(BEND/Bend)family members.Through RNA-seq,ChIP-seq,and ATAC-seq analyses,we showed that Bend5 worked together with Bend4 and helped mark chromatin boundaries to promote EpiLC induction in vitro.Our findings suggest that BEND/Bend proteins represent a new family of transcriptional modulators and chromatin boundary factors that participate in gene expression regulation during early germline development.
文摘Polycomb group(PcG)ring finger protein 6(PCGF6),though known as a member of the transcription-re-pressing complexes,PcG,also has activation function in regulating pluripotency gene expression.However,the mechanism underlying the activation function of PCGF6 is poorly understood.Here,we found that PCGF6 co-localizes to gene activation regions along with pluripotency factors such as OCT4.In addition,PCGF6 was recruited to a subset of the super-enhancer(SE)regions upstream of cell cycle-associated genes by OCT4,and increased their expression.By combining with promoter capture Hi-C data,we found that PCGF6 activates cell cycle genes by regulating SE-promoter interactions via 3D chromatin.Our fin dings highlight a novel mechanism of PcG protein in regulating pluripotency,and provide a research basis for the therapeutic application of pluripotent stem cells.