期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Highly efficient mixed-metal spinel cobaltite electrocatalysts for the oxygen evolution reaction 被引量:3
1
作者 Leiming Tao penghu guo +5 位作者 Weiling Zhu Tianle Li Xiantai Zhou Yongqing Fu Changlin Yu Hongbing Ji 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2020年第12期1855-1863,共9页
Cation substitution in spinel cobaltites(e.g.,ACo2O4,in which A=Mn,Fe,Co,Ni,Cu,or Zn)is a promising strategy to precisely modulate their electronic structure/properties and thus improve the corresponding electrochemic... Cation substitution in spinel cobaltites(e.g.,ACo2O4,in which A=Mn,Fe,Co,Ni,Cu,or Zn)is a promising strategy to precisely modulate their electronic structure/properties and thus improve the corresponding electrochemical performance for water splitting.However,the fundamental principles and mechanisms are not fully understood.This research aims to systematically investigate the effects of cation substitution in spinel cobaltites derived from mixed-metal-organic frameworks on the oxygen evolution reaction(OER).Among the obtained ACo2O4 catalysts,FeCo2O4 showed excellent OER performance with a current density of 10 mA·cm^-2 at an overpotential of 164 mV in alkaline media.Both theoretical calculations and experimental results demonstrate that the Fe substitution in the crystal lattice of ACo2O4 can significantly accelerate charge transfer,thereby achieving enhanced electrochemical properties.The crystal field of spinel ACo2O4,which determines the valence states of cations A,is identified as the key factor to dictate the OER performance of these spinel cobaltites. 展开更多
关键词 Cation-substituted spinel cobaltites Crystal field Oxygen evolution reaction WATER-SPLITTING Electrocatalysis
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部