A series of phosphorus-modified PITQ-13 catalysts was prepared by wet impregnation of NH4H2PO4 solution into an HITQ-13 parent. The catalysts were characterized using XRD, N2 adsorption, MAS NMR and NH3-TPD. Their cat...A series of phosphorus-modified PITQ-13 catalysts was prepared by wet impregnation of NH4H2PO4 solution into an HITQ-13 parent. The catalysts were characterized using XRD, N2 adsorption, MAS NMR and NH3-TPD. Their catalytic performance in 1-butene catalytic cracking was evaluated in a fixed fluidized bed reactor. The results showed that the crystallinity, surface area and pore volume of P-modified PITQ-13 catalysts decreased with the increasing amounts of P. The number of weak acid sites increased, whereas that of strong acidity decreased. The selectivity to propylene in 1-butene cracking reactions increased because of the decrease in strong acidity. The yield of propylene achieved 41.6% over PITQ-13-2 catalyst with a P content of 1.0 wt%, which was 5.1% greater than that achieved over HITQ-13 catalyst.展开更多
基金supported by PetroChina Company Limited(12-09-01-01)the National Basic Research Program of China(973 Program,2012CB215001)
文摘A series of phosphorus-modified PITQ-13 catalysts was prepared by wet impregnation of NH4H2PO4 solution into an HITQ-13 parent. The catalysts were characterized using XRD, N2 adsorption, MAS NMR and NH3-TPD. Their catalytic performance in 1-butene catalytic cracking was evaluated in a fixed fluidized bed reactor. The results showed that the crystallinity, surface area and pore volume of P-modified PITQ-13 catalysts decreased with the increasing amounts of P. The number of weak acid sites increased, whereas that of strong acidity decreased. The selectivity to propylene in 1-butene cracking reactions increased because of the decrease in strong acidity. The yield of propylene achieved 41.6% over PITQ-13-2 catalyst with a P content of 1.0 wt%, which was 5.1% greater than that achieved over HITQ-13 catalyst.