Liquid metal(LM)has become an emerging material paradigm in the electromagnetic interference shielding field owing to its excellent electrical conductivity.However,the processing of lightweight bulk LM composites with...Liquid metal(LM)has become an emerging material paradigm in the electromagnetic interference shielding field owing to its excellent electrical conductivity.However,the processing of lightweight bulk LM composites with finite package without leakage is still a great challenge,due to high surface tension and pump-out issues of LM.Here,a novel confined thermal expansion strategy based on expandable microsphere(EM)is proposed to develop a new class of LM-based monoliths with 3D continuous conductive network.The EM/LM monolith(EM/LMm)presents outstanding performance of lightweight like metallic aerogel(0.104 g cm^(-1)),high strength(3.43 MPa),super elasticity(90%strain),as well as excellent tailor ability and recyclability,rely on its unique gas-filled closed-cellular structure and refined LM network.Moreover,the assembled highly conducting EM/LMm exhibits a recorded shielding effectiveness(98.7 dB)over a broad frequency range of 8.2-40 GHz among reported LM-based composites at an ultra-low content of LM,and demonstrates excellent electromagnetic sealing capacity in practical electronics.The ternary EM/LM/Ni monoliths fabricated by the same approach could be promising universal design principles for multifunctional LM composites,and applicable in magnetic responsive actuator.展开更多
Olfactory ensheathing cells (OECs) can promote axonal regeneration and remyelination for the treatment of spinal cord injury. OECs can also treat experimental allergic encephalomyelitis (EAE), but it remains uncle...Olfactory ensheathing cells (OECs) can promote axonal regeneration and remyelination for the treatment of spinal cord injury. OECs can also treat experimental allergic encephalomyelitis (EAE), but it remains unclear whether OECs might be rejected by the immune system in the brain including the destruction of the blood-brain barrier under inflammation, the release of inflammatory factors, the activation of local antigen-presenting cells (e.g., microglia cells) and antigen drainage. We found that OECs expressed major histocompatibility complex (MHC)-I molecules on the cell surface, barely expressed MHC-II, but MHC-II could be induced by interferon-v, suggesting that OECs have certain immunogenicity. When OECs were transplanted into normal animal brains, no OECs were phagocytosed by dendritic cells in the cervical lymph node, and OECs did not induce lymphocyte proliferation, which indicates that OECs share some immune privilege under normal conditions. However, OECs in the rat EAE brain were phagocytosed by dendritic cells in the cervical lymph node and enhanced lymphocyte proliferation. These findings suggest that OECs are rejected because of increased immunogenicity in EAE brain, and that brain inflammation, in particular activated dendritic cells, may be a prerequisite for rejecting OECs.展开更多
Strain sensors with high stretchability, broad strain range, high sensitivity, and good reliability are desirable, owing to their promising applications in electronic skins and human motion monitoring systems. In this...Strain sensors with high stretchability, broad strain range, high sensitivity, and good reliability are desirable, owing to their promising applications in electronic skins and human motion monitoring systems. In this paper, we report a high- performance strain sensor based on printable and stretchable electrically con- ductive elastic composites. This strain sensor is fabricated by mixing silver-coated polystyrene spheres (PS@Ag) and liquid polydimethylsiloxane (PDMS) and screen-printed to a desirable geometry. The strain sensor exhibits fascinating comprehensive performances, including high electrical conductivity (1.65 × 104 S/m), large workable strain range (〉 80%), high sensitivity (gauge factor of 17.5 in strain of 0%-10%, 6.0 in strain of 10%-60% and 78.6 in strain of 60%-80%), inconspicuous resistance overshoot (〈 15%), good reproducibility and excellent long-term stability (1,750 h at 85℃/85% relative humidity) for PS@Ag/PDMS-60, which only contains - 36.7 wt.% of silver. Simultaneously, this strain sensor provides the advantages of low-cost, simple, and large-area scalable fabrication, as well as robust mechanical properties and versatility in applications. Based on these performance characteristics, its applications in flexible printed electrodes and monitoring vigorous human motions are demonstrated, revealing its tremendous potential for applications in flexible and wearable electronics.展开更多
With the continuous development of wearable electronics,health care and smart terminals,highly performance flexible pressure sensors present a huge application prospect.In this study,by introducing the micro-array str...With the continuous development of wearable electronics,health care and smart terminals,highly performance flexible pressure sensors present a huge application prospect.In this study,by introducing the micro-array structured electrodes and dielectric layers with high dielectric constant,capacitive pressure sensor fabricated with a brand new preparation strategy and highly sensitive is proposed.The prepared micro-array structure is the basis for sensors with high sensitivity.Besides,the contact area between the two electrodes changes from linear to planar with the increased loading,which result in a wider linear responding range.In addition,by introducing ceramic dielectric material-barium titanate(BT)fillers into the dielectric layer to increase it’s the dielectric constant,the sensitivity of the sensor shows two-fold increase.Moreover,the sensitivity gradients can be tuned by changing the loading contents of BT particles.Hence,compared with parallel board capacitive sensors with ordinary dielectric layer,these sensors exhibit excellent performance as follow,high sensitivity(up to 4.9 kPa^(-1))under low pressure range(0-2500 Pa),low detection limit(<1.7 Pa),short response time(<50 ms),a stable response over 5000 loading-unloading cycles,bending stability and an adjustable sensitivity.Further,the flexible pressure sensor can detect the pressure of the water droplets and monitor human movement behavior.With the facile design and excellent comprehensive properties,the flexible pressure sensor provides a new approach to improve the sensitivity and shows a broad application prospects in the wearable electronics,health care and smart terminals.展开更多
基金This work was financially supported by the National Natural Science Foundation of China(62074154)China Postdoctoral Science Foundation(Grant No.2020M682983)+2 种基金Guangdong Basic and Applied Basic Research Fund(2020A1515110962,2020A1515110154)Shenzhen Basic Research Plan(JCYJ20180507182530279)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(2017411).
文摘Liquid metal(LM)has become an emerging material paradigm in the electromagnetic interference shielding field owing to its excellent electrical conductivity.However,the processing of lightweight bulk LM composites with finite package without leakage is still a great challenge,due to high surface tension and pump-out issues of LM.Here,a novel confined thermal expansion strategy based on expandable microsphere(EM)is proposed to develop a new class of LM-based monoliths with 3D continuous conductive network.The EM/LM monolith(EM/LMm)presents outstanding performance of lightweight like metallic aerogel(0.104 g cm^(-1)),high strength(3.43 MPa),super elasticity(90%strain),as well as excellent tailor ability and recyclability,rely on its unique gas-filled closed-cellular structure and refined LM network.Moreover,the assembled highly conducting EM/LMm exhibits a recorded shielding effectiveness(98.7 dB)over a broad frequency range of 8.2-40 GHz among reported LM-based composites at an ultra-low content of LM,and demonstrates excellent electromagnetic sealing capacity in practical electronics.The ternary EM/LM/Ni monoliths fabricated by the same approach could be promising universal design principles for multifunctional LM composites,and applicable in magnetic responsive actuator.
基金Young Talent Innovation Program of Fujian Province Department of Science and Technology,No.2006F3032
文摘Olfactory ensheathing cells (OECs) can promote axonal regeneration and remyelination for the treatment of spinal cord injury. OECs can also treat experimental allergic encephalomyelitis (EAE), but it remains unclear whether OECs might be rejected by the immune system in the brain including the destruction of the blood-brain barrier under inflammation, the release of inflammatory factors, the activation of local antigen-presenting cells (e.g., microglia cells) and antigen drainage. We found that OECs expressed major histocompatibility complex (MHC)-I molecules on the cell surface, barely expressed MHC-II, but MHC-II could be induced by interferon-v, suggesting that OECs have certain immunogenicity. When OECs were transplanted into normal animal brains, no OECs were phagocytosed by dendritic cells in the cervical lymph node, and OECs did not induce lymphocyte proliferation, which indicates that OECs share some immune privilege under normal conditions. However, OECs in the rat EAE brain were phagocytosed by dendritic cells in the cervical lymph node and enhanced lymphocyte proliferation. These findings suggest that OECs are rejected because of increased immunogenicity in EAE brain, and that brain inflammation, in particular activated dendritic cells, may be a prerequisite for rejecting OECs.
基金This work was supported by the National Key R&D Project from Minister of Science and Technology of China (No. 2016YFA0202702), National Natural Science Foundation of China (Nos. 61701488 and 21571186), Leading Scientific Research Project of Chinese Academy of Sciences (No. QYZDY-SSW-JSC010), Youth Innovation Promotion Association (No. 2017411), Guangdong Provincial Key Laboratory (No. 2014B030301014), Guangdong TeZhi Plan Youth Talent of Science and Technology (No. 2014TQ01C102), Shenzhen Basic Research plan (Nos. JSGG20150512145714246 and JSGG20160229155249762) and SIAT Innovation Program for Excellent Young Researchers (No. 2016005).
文摘Strain sensors with high stretchability, broad strain range, high sensitivity, and good reliability are desirable, owing to their promising applications in electronic skins and human motion monitoring systems. In this paper, we report a high- performance strain sensor based on printable and stretchable electrically con- ductive elastic composites. This strain sensor is fabricated by mixing silver-coated polystyrene spheres (PS@Ag) and liquid polydimethylsiloxane (PDMS) and screen-printed to a desirable geometry. The strain sensor exhibits fascinating comprehensive performances, including high electrical conductivity (1.65 × 104 S/m), large workable strain range (〉 80%), high sensitivity (gauge factor of 17.5 in strain of 0%-10%, 6.0 in strain of 10%-60% and 78.6 in strain of 60%-80%), inconspicuous resistance overshoot (〈 15%), good reproducibility and excellent long-term stability (1,750 h at 85℃/85% relative humidity) for PS@Ag/PDMS-60, which only contains - 36.7 wt.% of silver. Simultaneously, this strain sensor provides the advantages of low-cost, simple, and large-area scalable fabrication, as well as robust mechanical properties and versatility in applications. Based on these performance characteristics, its applications in flexible printed electrodes and monitoring vigorous human motions are demonstrated, revealing its tremendous potential for applications in flexible and wearable electronics.
基金financially supported by National Natural Science Foundation of China(21571186)National key R&D project from minister of science and technology of China(2016YFA0202702)+1 种基金Shenzhen Basic Research Plan(JCYJ20170818162548196)Youth Innovation Promotion Association of the Chinese Academy of Sciences(2017411).
文摘With the continuous development of wearable electronics,health care and smart terminals,highly performance flexible pressure sensors present a huge application prospect.In this study,by introducing the micro-array structured electrodes and dielectric layers with high dielectric constant,capacitive pressure sensor fabricated with a brand new preparation strategy and highly sensitive is proposed.The prepared micro-array structure is the basis for sensors with high sensitivity.Besides,the contact area between the two electrodes changes from linear to planar with the increased loading,which result in a wider linear responding range.In addition,by introducing ceramic dielectric material-barium titanate(BT)fillers into the dielectric layer to increase it’s the dielectric constant,the sensitivity of the sensor shows two-fold increase.Moreover,the sensitivity gradients can be tuned by changing the loading contents of BT particles.Hence,compared with parallel board capacitive sensors with ordinary dielectric layer,these sensors exhibit excellent performance as follow,high sensitivity(up to 4.9 kPa^(-1))under low pressure range(0-2500 Pa),low detection limit(<1.7 Pa),short response time(<50 ms),a stable response over 5000 loading-unloading cycles,bending stability and an adjustable sensitivity.Further,the flexible pressure sensor can detect the pressure of the water droplets and monitor human movement behavior.With the facile design and excellent comprehensive properties,the flexible pressure sensor provides a new approach to improve the sensitivity and shows a broad application prospects in the wearable electronics,health care and smart terminals.