期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
More tree growth reduction due to consecutive drought and its legacy effect for a semiarid larch plantation in Northwest China
1
作者 Yanfang Wan pengtao yu +5 位作者 Yanhui Wang Jiamei Li yushi Bai Yipeng yu Bingbing Liu Xiaocha Wei 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第2期188-196,共9页
Extreme climate has increasingly led to negative impacts on forest ecosystems globally,especially in semiarid areas where forest ecosystems are more vulnerable.However,it is poorly understood how tree growth is affect... Extreme climate has increasingly led to negative impacts on forest ecosystems globally,especially in semiarid areas where forest ecosystems are more vulnerable.However,it is poorly understood how tree growth is affected by different drought events.In 2006–2009,the larch plantations in the semiarid areas of Northwest China were negatively affected by four consecutive dry years,which was a very rare phenomenon that may occur frequently under future climate warming.In this study,we analyzed the effect of these consecutive dry years on tree growth based on the data of the tree rings in the dominant layer of the forest canopy on a larch plantation.We found that the tree-ring width index(RWI)in dry years was lower than that in normal years,and it experienced a rapidly decreasing trend from 2006 to 2009(slope=-0.139 year^(-1),r=-0.94)due to water supply deficits in those dry years.Drought induced legacy effects of tree growth reduction,and consecutive dry years corresponded with greater growth reductions and legacy effects.Growth reductions and legacy effects were significantly stronger in the third and fourth consecutive dry years than that of single dry year(p<0.05),which might have been due to the cumulative stress caused by consecutive dry years.Our results showed that larch trees experienced greater tree growth reduction due to consecutive dry years and their legacy effect,and the trees had lower recovery rates after consecutive dry years.Our results highlight that consecutive dry years pose a new threat to plantations under climate warming,and thus,the effect of climate extremes on tree growth should be considered in growth models in semiarid areas. 展开更多
关键词 Tree rings Drought effects Legacy effects Growth-climate relationships Larix principis-rupprechtii
下载PDF
Modelling the response of larch growth to age,density,and elevation and the implications for multifunctional management in northwest China 被引量:1
2
作者 Ao Tian Yanhui Wang +3 位作者 Ashley A.Webb pengtao yu Xiao Wang Zebin Liu 《Journal of Forestry Research》 SCIE CAS CSCD 2023年第5期1423-1436,共14页
Plantations of Rupprecht's larch(Larix principis-rupprechtii)have been widely established in the drylands of northwest and north China under traditional fastgrowing plantation management strategies.These strategie... Plantations of Rupprecht's larch(Larix principis-rupprechtii)have been widely established in the drylands of northwest and north China under traditional fastgrowing plantation management strategies.These strategies and the long-term logging ban have led to over-populated stands with lower structural and functional stability,less economic benefit and higher water consumption.To guide the sustainable management of larch plantations,field surveys and historical data compilation were undertaken in the Liupan Mountains of northwest China.The main influencing factors(stand structure and site condition)and their effects on mean tree height,mean DBH and timber volumes were determined based on up-boundary line analysis.Tree growth models coupling the effects of tree age,stand density,and elevation were established.Both height and DBH markedly increased initially and then slowly with tree age,decreased with stand density,and showed unimodal change with elevation.The coupled growth models accounted for72-78%of the variations in tree height,DBH and timber growth.Recommendations for future plantation management are:(1)prolong the rotation to at least 60 years to produce large-diameter,high-quality timber and maintain greater carbon stocks;(2)zone the target functions of stands by elevation;and,(3)reduce stand density for balanced supply of multiple ecosystem services.The growth models developed can predict growth response of larch plantations to density alteration under given ages and elevations,and assist the transformation from traditional management for maximum timber production to site-specific and multifunctional management with longer rotations and moderate tree density. 展开更多
关键词 Larch plantations Coupled growth model Influencing factors Age DENSITY ELEVATION
下载PDF
Impacts of environmental and canopy conditions on the nighttime sap flow of larch plantations in the Liupan Mountains,China 被引量:1
3
作者 Songping yu Jianbin Guo +4 位作者 Zebin Liu Yanhui Wang Lihong Xu pengtao yu Liang He 《Journal of Forestry Research》 SCIE CAS CSCD 2023年第6期1927-1940,共14页
Nighttime sap flow(Q_(n))is an important physiological activity under which trees manage drought stress.An in-depth understanding of the characteristics of Q_(n)and its response to environmental and canopy conditions ... Nighttime sap flow(Q_(n))is an important physiological activity under which trees manage drought stress.An in-depth understanding of the characteristics of Q_(n)and its response to environmental and canopy conditions are of significance for arid area forest and water management.This study measured daily sap flow(Q_(s))of a Larix principis-rupprechtii plantation in the Liupan Mountains,northwest China during the 2017-2019 growing seasons,and separated Q_(s)into daytime sap flow(Qd)and Q_(n).Meteorological conditions(reference evapotranspiration,ETref),canopy structure(leaf area index,LAI),and soil moisture(relative soil water content,RSWC)were considered as the main biophysical factors affecting Q_(n).The structural equation model and upper boundary line method determined the effects of compound and single factors on Q_(n)The daily mean Q_(n)values during the growing seasons in 2017,2018,and 2019 were 0.024,0.026,and 0.030 mm d-1,accounting for 6.2,11.2,and 10.1%of Q_(s),respectively.Q_(n)at different canopy development phases(leaf expanding,LG;leaf expanded,LD;and defoliation,DF)over three years was LD>LG>DF.Q_(n)increased with increasing ETref,whereas the ratio of Q_(n)to Q_(s)decreased.Q_(n)did not show regular variation in the three-year growing seasons under different soil moisture conditions.ETrefand LAI mainly controlled Q_(n)by affecting Qd,whereas RSWC had no significant effect on Q_(n).Q_(n)had a positive and linear relationship with LAI and a quadratic relationship with ETref.Both explained 40%of variation in Q_(n)Meteorological and canopy conditions are important factors affecting Q_(n)on the semi-humid study site.The application of the Q_(n)model coupled with the impact of ETrefand LAI furthers understanding of the impacts of climate and forest structure change on Q_(n). 展开更多
关键词 Nighttime sap flow Reference evapotranspiration Leaf area index Soil moisture Multifactor impact
下载PDF
Environmental and canopy conditions regulate the forest floor evapotranspiration of larch plantations 被引量:2
4
作者 Zebin Liu Yanhui Wang +2 位作者 pengtao yu Lihong Xu Songping yu 《Forest Ecosystems》 SCIE CSCD 2022年第5期606-616,共11页
Background:Integrated forest-water management focusing on forest-water coordination is an important way to alleviate water use conflicts among forests and other sectors in vast dryland regions.Forest floor evapotransp... Background:Integrated forest-water management focusing on forest-water coordination is an important way to alleviate water use conflicts among forests and other sectors in vast dryland regions.Forest floor evapotranspiration(FE),which is an important component of forest evapotranspiration,accounts for a large proportion of the water consumed in arid forests.Elucidating how environmental and canopy conditions impact FE has important significance for guiding integrated forest-water management in a changing environment.Methods:The microlysimeter(ML)-measured evapotranspiration(FE_(ML)),reference evapotranspiration(ET_(o)),volumetric soil moisture(VSM),and canopy leaf area index(LAI)were monitored in a Larix principis-rupprechtii plantation located in the semi-humid Liupan Mountains of Northwest China in 2019(June–September)and 2021(May–September).The response functions of the FE coefficient(the ratio of daily FEML to ET_(o))to the individual factors of VSM and LAI were determined using upper boundary lines of scatter diagrams of measured data.The framework of the daily FE(FE_(ML))model was established by multiplying the response functions to individual factors and then calibrated and validated using measured data to assess the FE response to environmental and canopy conditions.Results:(1)The FE coefficient increased first rapidly and then slowly with rising VSM but decreased slowly with rising LAI.(2)The simple daily FE(FE_(ML))model developed by coupling the impacts of ET_(o),LAI,and VSM in this study performed well for predicting FE.(3)The impacts of ET_(o),LAI,and VSM were quantified using the FE(FE_(ML))model,e.g.,at a given VSM,the impact of ETo on FE increased obviously with decreasing LAI;at a given ET_(o),the impact of LAI on FE increased with rising VSM.(4)In the two study years,when directly using the microlysimeter measurement,the real FE on the forest floor was overestimated when the VSM in microlysimeters was above 0.215 but underestimated below 0.215 due to the difference in VSM from the forest floor.Thus,the VSM on the forest floor should be input into the FE model for estimating the real FE on the forest floor.Conclusions:The daily FE of larch plantation is controlled by three main factors of environmental(ET_(o) and VSM)and canopy conditions(LAI).The variation in daily FE on the forest floor can be well estimated using the simple FE model coupling the effects of the three main factors and by inputting the VSM on the forest floor into the model to avoid the errors when directly using the microlysimeter measurement with different VSMs from the forest floor.The developed FE model and suggested prediction approach are helpful to estimate the FE response to changing conditions,and to guide forest management practices when saving water by thinning is required. 展开更多
关键词 Larch plantation Forest floor evapotranspiration Reference evapotranspiration Soil water content Canopy structure
下载PDF
Characteristics of canopy interception and its simulation with a revised Gash model for a larch plantation in the Liupan Mountains, China 被引量:2
5
作者 Zebin Liu Yanhui Wang +7 位作者 Ao Tian yu Liu Ashley A.Webb Yarui Wang Haijun Zuo pengtao yu Wei Xiong Lihong Xu 《Journal of Forestry Research》 SCIE CAS CSCD 2018年第1期187-198,共12页
Canopy interception is a significant proportion of incident rainfall and evapotranspiration of forest ecosystems. Hence, identifying its magnitude is vital for studies of eco-hydrological processes and hydrological im... Canopy interception is a significant proportion of incident rainfall and evapotranspiration of forest ecosystems. Hence, identifying its magnitude is vital for studies of eco-hydrological processes and hydrological impact evaluation. In this study, throughfall, stemflow and interception were measured in a pure Larix principis-rupprechtii Mayr.(larch) plantation in the Liupan Mountains of northwestern China during the growing season(May–October) of 2015, and simulated using a revised Gash model. During the study period, the total precipitation was 499.0 mm; corresponding total throughfall, stemflow and canopy interception were 410.3, 2.0 and 86.7 mm,accounting for 82.2, 0.4 and 17.4% of the total precipitation, respectively. With increasing rainfall, the canopy interception ratio of individual rainfall events decreased initially and then tended to stabilize. Within the study period, the simulated total canopy interception, throughfall and stemflow were 2.2 mm lower, 2.5 mm higher and 0.3 mm lower than their measured values, with a relative error of 2.5, 0.6 and 15.0%, respectively. As quantified by the model, canopy interception loss(79%) mainly consisted of interception caused by canopy adsorption, while the proportions of additional interception and trunk interception were small. The revised Gash model was highly sensitive to the parameter of canopy storage capacity,followed by the parameters of canopy density and mean rainfall intensity, but less sensitive to the parameters of mean evaporation rate, trunk storage capacity, and stemflow ratio. The revised Gash model satisfactorily simulated the total canopy interception of the larch plantation within the growing season but was less accurate for some individual rainfall events, indicating that some flaws exist in the model structure. Further measures to improve the model’s ability in simulating the interception of individual rainfall events were suggested. 展开更多
关键词 Canopy interception Larch plantation Revised Gash model STEMFLOW THROUGHFALL
下载PDF
CPSDv0: a forest stand structure database for plantation forests in China
6
作者 Xiuchen Wu Xiaofei Jiang +14 位作者 Hongyan Liu Craig Allen Xiaoyan Li Pei Wang Zongshan Li yuting Yang Shulei Zhang Fangzhong Shi Jiaojun Zhu pengtao yu Mei Zhou Pengwu Zhao Yanhui Wang Chao yue Deliang Chen 《Big Earth Data》 EI CSCD 2023年第1期212-230,共19页
Forest stand structure is not only a crucial factor for regulating forest functioning but also an important indicator for sustainable forest management and ecosystem services.Although there exists a few national/globa... Forest stand structure is not only a crucial factor for regulating forest functioning but also an important indicator for sustainable forest management and ecosystem services.Although there exists a few national/global structure databases for natural forests,a country-wide synthetic structure database for plantation forests over China,the world’s largest player in plantation forests,has not been achieved.In this study,we built a country-wide synthetic stand structure database by surveying more than 600 peer-reviewed literature.The database covers tree species,mean stand age,mean tree height,stand density,canopy coverage,diameter at breast height,as well as the associated ancillary in-situ topographical and soil properties.A total of 594 pub-lished studies concerning diverse forest stand structure parameters were compiled for 46 tree species.This first synthesis for stand structure of plantation forests over China supports studies on the evolution/health of plantation forests in response to rapid climate change and intensified disturbances,and benefits country-wide sustainable forest management,future afforestation or reforestation planning.Potential users include those studying forest community dynamics,regional tree growth,ecosystem stability,and health,as well as those working with conservation and sustainable management.This dataset is freely acces-sible at http://www.doi.org/10.11922/sciencedb.j00076.00091. 展开更多
关键词 Stand structure PLANTATION tree age tree height stand density canopy coverage
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部