New methods to improve the bone response to metallic implants are still emerging, ranging from surface modifications of the metal to coatings and drug delivery. One further development of coatings on implants is to in...New methods to improve the bone response to metallic implants are still emerging, ranging from surface modifications of the metal to coatings and drug delivery. One further development of coatings on implants is to incorporate bioactive ions in order to stimulate the bone response without the need of drug delivery. The aim of the current study is to prepare apatite coatings containing Sr and Si using a solution method, for the purpose of further optimising the bone response to metal implants. Titanium substrates were activated to induce the formation of coatings in modified PBS solutions. Soaking in PBS solutions with different concentrations of strontium and silicate at 37℃ or 60℃ produced coatings with different morphologies, thicknesses and compositions. Ion release experiments showed simultaneous release of Sr and Si from the coatings both in PBS and Tris-HCl. Analysis of the results using the Korsmeyer-Peppas model indicate that the release of ions from the coatings was a combination of Fickian diffusion and degradation of the coatings. This study shows that it is possible to coat Ti substrates with modified apatite with ion release functionality and thereby increase the possibilities for a tailored bone response in vivo.展开更多
基金This work was supported by BIOMATCELL,VINN Ex-cellence Center of Biomaterials and Cell Therapy
文摘New methods to improve the bone response to metallic implants are still emerging, ranging from surface modifications of the metal to coatings and drug delivery. One further development of coatings on implants is to incorporate bioactive ions in order to stimulate the bone response without the need of drug delivery. The aim of the current study is to prepare apatite coatings containing Sr and Si using a solution method, for the purpose of further optimising the bone response to metal implants. Titanium substrates were activated to induce the formation of coatings in modified PBS solutions. Soaking in PBS solutions with different concentrations of strontium and silicate at 37℃ or 60℃ produced coatings with different morphologies, thicknesses and compositions. Ion release experiments showed simultaneous release of Sr and Si from the coatings both in PBS and Tris-HCl. Analysis of the results using the Korsmeyer-Peppas model indicate that the release of ions from the coatings was a combination of Fickian diffusion and degradation of the coatings. This study shows that it is possible to coat Ti substrates with modified apatite with ion release functionality and thereby increase the possibilities for a tailored bone response in vivo.