Within the expanding paradigm of medical imaging in Teleradiology-Telemedicine there is increasing demand for transmitting diagnostic medical imagery. These are usually rich in radiological contents and the associated...Within the expanding paradigm of medical imaging in Teleradiology-Telemedicine there is increasing demand for transmitting diagnostic medical imagery. These are usually rich in radiological contents and the associated file sizes are large which must be compressed with minimal file size to minimize transmission time and robustly coded to withstand required network medium. It has been reinforced through extensive research that the diagnostically important regions of medical images, the Region of Interest (ROI), must be compressed by lossless or near lossless algorithm while on the other hand, the background region be compressed with some loss of information but still recognizable using JPEG 2000 standard. We develop a compression model and present its application on MRI images. Applying on MRI images achieved higher compression ratio 16:1, analogously minimum transmission time, using MAXSHIFT method proved diagnostically significant and effective both objectively and subjectively.展开更多
Model based implementation of a novel nonlinear adaptive filter for extraction of time varying sinusoids using Xilinx system generator has been presented in this work. The practicality of this filter model along with ...Model based implementation of a novel nonlinear adaptive filter for extraction of time varying sinusoids using Xilinx system generator has been presented in this work. The practicality of this filter model along with its performance makes it one of the foremost candidates to be applied on nonlinear systems for the purpose of estimation and extraction using reconfigurable hardware like FPGA. A design implementation and verification approach has been discussed for more efficient implementation. Timing and power analysis has been performed and the architecture has been optimized for speed and power to perform at higher frequency when integrated on a Xilinx FPGA. The proposed hardware oriented architecture has been successfully implemented and simulated. The simulation results to track a noisy input have also been shown to demonstrate the exceptional performance of the hardware based architecture developed.展开更多
文摘Within the expanding paradigm of medical imaging in Teleradiology-Telemedicine there is increasing demand for transmitting diagnostic medical imagery. These are usually rich in radiological contents and the associated file sizes are large which must be compressed with minimal file size to minimize transmission time and robustly coded to withstand required network medium. It has been reinforced through extensive research that the diagnostically important regions of medical images, the Region of Interest (ROI), must be compressed by lossless or near lossless algorithm while on the other hand, the background region be compressed with some loss of information but still recognizable using JPEG 2000 standard. We develop a compression model and present its application on MRI images. Applying on MRI images achieved higher compression ratio 16:1, analogously minimum transmission time, using MAXSHIFT method proved diagnostically significant and effective both objectively and subjectively.
文摘Model based implementation of a novel nonlinear adaptive filter for extraction of time varying sinusoids using Xilinx system generator has been presented in this work. The practicality of this filter model along with its performance makes it one of the foremost candidates to be applied on nonlinear systems for the purpose of estimation and extraction using reconfigurable hardware like FPGA. A design implementation and verification approach has been discussed for more efficient implementation. Timing and power analysis has been performed and the architecture has been optimized for speed and power to perform at higher frequency when integrated on a Xilinx FPGA. The proposed hardware oriented architecture has been successfully implemented and simulated. The simulation results to track a noisy input have also been shown to demonstrate the exceptional performance of the hardware based architecture developed.