期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Influence of pyrolysis temperature on rice straw biochar properties and corresponding effects on dynamic changes in bispyribac-sodium adsorption and leaching behavior in soil 被引量:1
1
作者 pervinder kaur Neha SHARMA Khushwinder kaur 《Pedosphere》 SCIE CAS CSCD 2023年第3期463-478,共16页
Bispyribac-sodium is a weakly acidic herbicide with high water solubility and is thus a potential source of groundwater contamination.Considering the risk inherent to the use of this herbicide,this study assessed the ... Bispyribac-sodium is a weakly acidic herbicide with high water solubility and is thus a potential source of groundwater contamination.Considering the risk inherent to the use of this herbicide,this study assessed the impacts of rice straw(RS)and biochar amendments on the adsorption and leaching behavior of bispyribac-sodium in soil.Biochars were produced from RS at different pyrolysis temperatures and characterized using various spectral techniques.Rice straw had a surface area of 3.996×10^(4)m^(2)kg^(-1),which increased under pyrolysis;biochars prepared at 350 and 550℃(RS350 and RS550)in a closed furnace with limited oxygen supply had a surface area of 5.763×10^(4)and 6.890×10^(4)m^(2)kg^(-1),respectively,and biochar prepared by purging the pyroformer with N2(RSC)had the highest surface area of 12.173×10^(4)m^(2)kg^(-1).After amendment with RS and biochar,soil Freundlich adsorption capacity(KF ads)increased to varying extents in the order RSC>RS350>RS550,from 2.89×10^(3)to 29.57×10^(3)mg^(1-1)/nkg^(-1)L1/n,compared to1.55×10^(3)mg^(1-1)/nkg^(-1)L1/nin unamended soil.The variability in KF ads of bispyribac-sodium amongst the RS-and biochar-amended soils was dependent on the surface area of the amendments.The desorption of bispyribac-sodium decreased in the RS-and biochar-amended soils and varied from90.45%to 95.20%in unamended soils and from 60.95%to 89.50%in amended soils.The adsorption and desorption of bispyribac-sodium varied significantly depending on its concentration and the type and application rate of soil amendment.Different leaching risk evaluation indices,viz.,modified leach index(M.LEACH),leach index(LEACH),groundwater ubiquity score(GUS),Hornsby index(HI),leaching index(LIN),and pesticide leaching potential(PLP)index,were used to assess the susceptibility of groundwater to herbicide leaching.To reduce the repetitive effects of common parameters in each index,a new index was developed by employing principal component analysis(PCA)to condense their information into a single ranking.The results of the PCA indicated that RS and biochar amendments could be an effective management practice for controlling the leaching potential of bispyribac-sodium in soil. 展开更多
关键词 DESORPTION Freundlich model groundwater contamination leaching potential leaching risk evaluation index PESTICIDE soil amendment Temkin isotherm
原文传递
Ultimate fate of halosulfuron methyl and its effects on enzymatic and microbial activities in three differently textured soils
2
作者 pervinder kaur Jasleen kaur Harshdeep kaur 《Pedosphere》 SCIE CAS CSCD 2023年第6期880-892,共13页
Halosulfuron methyl is a sulfonylurea herbicide used worldwide for weed control in sugarcane, maize, wheat, and rice production. Considering its environmental impact, this study evaluated the effects of soil type, app... Halosulfuron methyl is a sulfonylurea herbicide used worldwide for weed control in sugarcane, maize, wheat, and rice production. Considering its environmental impact, this study evaluated the effects of soil type, application rate, and temperature on the dynamics of halosulfuron methyl degradation.Additionally, as soil microbes and enzymes are reliable indicators of the impacts of anthropogenic activities on soil health, the effects of halosulfuron methyl on soil enzymatic and microbial activities were also assessed. The half-life(DT50) of halosulfuron methyl varied from 9.38 to 33.77 d. Increase in temperature accelerated the degradation and DT50 varied from 14.39 to 33.77, 11.05 to 28.94, and 9.38 to 25.41 d at 5, 15, and 25?C, respectively. The metabolites of halosulfuron methyl, including halosulfuron, methyl 3-chloro-5-((4,6-dimethoxy-2-pyrimidinyl) amino)-1-methyl-1H-pyrazole-4-carboxylate,4,6-dimethoxy-2-pyrimidinamine, and methyl 3-chloro-1-methyl-5-sulfamoyl-1H-pyrazole-4-carboxylate, were detected in the studied soils, and their appearance and disappearance varied with application rate, soil type, and incubation temperature. Halosulfuron methyl had transitory harmful effects on soil enzymatic and microbial activities depending on its application rate. The results suggest that the application rate of halosulfuron methyl, soil physicochemical parameters, and temperature should be considered together to ensure satisfactory weed control with reduced environmental risk. 展开更多
关键词 degradation environmental risks METABOLITES principal component analysis soil type sulfonylurea herbicides weed control
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部