This study illustrates an innovative way to fabricate inkjet-printed tracks by sequential printing of Zn nanoparticle ink and curing ink for low temperature in situ chemical sintering.Employing chemical curing in plac...This study illustrates an innovative way to fabricate inkjet-printed tracks by sequential printing of Zn nanoparticle ink and curing ink for low temperature in situ chemical sintering.Employing chemical curing in place of standard sintering methods leads to the advantages of using flexible substrates that may not withstand the high thermal budgets of the standard methods.A general formulation engineering method is adopted to produce highly concentrated Zn ink which is cured by inkjet printing an over-layer of aqueous acetic acid which is the curing agent.The experimental results reveal that a narrow window of acid concentration of curing ink plays a crucial role in determining the electrical properties of the printed Zn nanoparticles.Highly conductive(~10^(5)S m^(−1))and mechanically flexible printed Zn features are achieved.In addition,from systematic material characterization,we obtain an understanding of the curing mechanism.Finally,a touch sensor circuit is demonstrated involving all-Zn printed conductive tracks.展开更多
The original version of this Article omitted from the author list the 3rd author Pawel Jerzy Wojcik from redoxme AB,Research&Development Department,Norrköping,Sweden(Affiliation#3)and 7th author Peter Dyrekle...The original version of this Article omitted from the author list the 3rd author Pawel Jerzy Wojcik from redoxme AB,Research&Development Department,Norrköping,Sweden(Affiliation#3)and 7th author Peter Dyreklev from RISE Research Institutes of Sweden,Norrköping,Sweden(Affiliation#1).展开更多
基金funded by European Union’s Horizon 2020 research and innovation program under grant agreement number 814485。
文摘This study illustrates an innovative way to fabricate inkjet-printed tracks by sequential printing of Zn nanoparticle ink and curing ink for low temperature in situ chemical sintering.Employing chemical curing in place of standard sintering methods leads to the advantages of using flexible substrates that may not withstand the high thermal budgets of the standard methods.A general formulation engineering method is adopted to produce highly concentrated Zn ink which is cured by inkjet printing an over-layer of aqueous acetic acid which is the curing agent.The experimental results reveal that a narrow window of acid concentration of curing ink plays a crucial role in determining the electrical properties of the printed Zn nanoparticles.Highly conductive(~10^(5)S m^(−1))and mechanically flexible printed Zn features are achieved.In addition,from systematic material characterization,we obtain an understanding of the curing mechanism.Finally,a touch sensor circuit is demonstrated involving all-Zn printed conductive tracks.
文摘The original version of this Article omitted from the author list the 3rd author Pawel Jerzy Wojcik from redoxme AB,Research&Development Department,Norrköping,Sweden(Affiliation#3)and 7th author Peter Dyreklev from RISE Research Institutes of Sweden,Norrköping,Sweden(Affiliation#1).