期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Photogenerated singlet oxygen over zeolite-confined carbon dots for shape selective catalysis 被引量:2
1
作者 Qiu-Ying Yu Guang-Yao Zhai +7 位作者 Tian-Lu Cui Hui Su Zhong-Hua Xue Jun-Jun Zhang peter j.pauzauskie Shin-ichi Hirano Xin-Hao Li Jie-Sheng Chen 《Science China Chemistry》 SCIE EI CAS CSCD 2019年第4期434-439,共6页
Singlet oxygen as an activated oxygen species played an important role in organic synthesis. Suitable catalyst for converting ubiquitous oxygen molecule to singlet oxygen under mild conditions has attracted a wide ran... Singlet oxygen as an activated oxygen species played an important role in organic synthesis. Suitable catalyst for converting ubiquitous oxygen molecule to singlet oxygen under mild conditions has attracted a wide range of attention. Herein, carbon dots have been confined into mesopores of silicalite-1 nanocrystals framework and acted as active sites for generation of singlet oxygen. The high oxygen-adsorption capacity of zeolite nanocrystals facilitated the photocatalytic generation rate of singlet oxygen, outpacing the free-standing carbon dots for 14-fold. The integrated carbon dot-zeolite nanocrystal hybrid also exhibited a special size-dependent selectivity for organic synthesis by using the in situ formed and confined singlet oxygen as active oxygen species. 展开更多
关键词 ZEOLITE photocatalysis SINGLET oxygen carbon DOTS shape-selective
原文传递
Mass Transport in Nanowire Synthesis:An Overview of Scalable Nanomanufacturing 被引量:1
2
作者 Matthew J.Crane peter j.pauzauskie 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2015年第6期523-532,共10页
The ability to rationally engineer the growth and nanomanufacturing of one-dimensional nanowires in high volumes has the potential to enable applications of nanoscale materials in a diverse range of fields including e... The ability to rationally engineer the growth and nanomanufacturing of one-dimensional nanowires in high volumes has the potential to enable applications of nanoscale materials in a diverse range of fields including energy conversion and storage,catalysis,sensing,medicine,and information technology.This review provides a roadmap for the development of large-scale nanowire processing.While myriad techniques exist for bench-scale nanowire synthesis,these growth strategies typically fall within two major categories:1) anisotropically-catalyzed growth and 2) confined,template-based growth.However,comparisons between growth methods with different mass transport pathways have led to confusion in interpreting observations,in particular Gibbs-Thomson effects.We review mass transport in nanowire synthesis techniques to unify growth models and to allow for direct comparison of observations across different methods.In addition,we discuss the applicability of nanoscale,Gibbs-Thomson effects on mass transport and provide guidelines for the development of new growth models.We explore the scalability of these complex processes with dimensionless numbers and consider the effects of pressure,temperature,and precursor material on nanowire growth. 展开更多
关键词 NANOWIRE Mass transport MODELING Scalable growth
原文传递
Rapid synthesis of transition metal dichalcogenide-carbon aerogel composites for supercapacitor electrodes
3
作者 Matthew J.Crane Matthew B.Lim +1 位作者 Xuezhe Zhou peter j.pauzauskie 《Microsystems & Nanoengineering》 EI CSCD 2017年第1期212-220,共9页
Transition metal dichalcogenide(TMD)materials have recently demonstrated exceptional supercapacitor properties after conversion to a metallic phase,which increases the conductivity of the network.However,freestanding,... Transition metal dichalcogenide(TMD)materials have recently demonstrated exceptional supercapacitor properties after conversion to a metallic phase,which increases the conductivity of the network.However,freestanding,exfoliated transition metal dichalcogenide films exhibit surface areas far below their theoretical maximum(1.2%),can fail during electrochemical operation due to poor mechanical properties,and often require pyrophoric chemicals to process.On the other hand,pyrolyzed carbon aerogels exhibit extraordinary specific surface areas for double layer capacitance,high conductivity,and a strong mechanical network of covalent chemical bonds.In this paper,we demonstrate the scalable,rapid nanomanufacturing of TMD(MoS2 and WS2)and carbon aerogel composites,favoring liquid-phase exfoliation to avoid pyrophoric chemicals.The aerogel matrix support enhances conductivity of the composite and the synthesis can complete in 30 min.We find that the addition of transition metal dichalcogenides does not impact the structure of the aerogel,which maintains a high specific surface area up to 620 m^(2) g−1 with peak pore radii of 10 nm.While supercapacitor tests of the aerogels yield capacitances around 80 F g^(−1) at the lowest applied currents,the aerogels loaded with TMD’s exhibit volumetric capacitances up to 127% greater than the unloaded aerogels.In addition,the WS2 aerogels show excellent cycling stability with no capacitance loss over 2000 cycles,as well as markedly better rate capability and lower charge transfer resistance compared to their MoS2-loaded counterparts.We hypothesize that these differences in performance stem from differences in contact resistance and in the favorability of ion adsorption on the chalcogenides. 展开更多
关键词 AEROGEL molybdenum disulfide NANOMANUFACTURING RAPID resorcinol-formaldehyde SUPERCAPACITOR transition metal dichalcogenide tungsten disulfide
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部