Direct electrochemical formation of hydrogen peroxide(H2O2) from pure O2 and H2on cheap metal-free earth abundant catalysts has emerged as the highest atom-efficient and environmentally friendly reaction pathway and...Direct electrochemical formation of hydrogen peroxide(H2O2) from pure O2 and H2on cheap metal-free earth abundant catalysts has emerged as the highest atom-efficient and environmentally friendly reaction pathway and is therefore of great interest from an academic and industrial point of view. Very recently,novel metal-free mesoporous nitrogen-doped carbon catalysts have attracted large attention due to the unique reactivity and selectivity for the electrochemical hydrogen peroxide formation [1–3]. In this work,we provide deeper insights into the electrocatalytic activity, selectivity and durability of novel metal-free mesoporous nitrogen-doped carbon catalyst for the peroxide formation with a particular emphasis on the influence of experimental reaction parameters such as p H value and electrode potential for three different electrolytes. We used two independent approaches for the investigation of electrochemical hydrogen peroxide formation, namely rotating ring-disk electrode(RRDE) technique and photometric UV–VIS technique. Our electrochemical and photometric results clearly revealed a considerable peroxide formation activity as well as high catalyst durability for the metal-free nitrogen-doped carbon catalyst material in both acidic as well as neutral medium at the same electrode potential under ambient temperature and pressure. In addition, the obtained electrochemical reactivity and selectivity indicate that the mechanisms for the electrochemical formation and decomposition of peroxide are strongly dependent on the p H value and electrode potential.展开更多
Mixed metal oxides in the nanoscale are of great interest for many aspects of energy related research topics as water splitting, fuel cells and battery technology. The development of scalable, cost-efficient and robus...Mixed metal oxides in the nanoscale are of great interest for many aspects of energy related research topics as water splitting, fuel cells and battery technology. The development of scalable, cost-efficient and robust synthetic routes toward well-defined solid state structures is a major objective in this field.While monometallic oxides have been studied in much detail, reliable synthetic recipes targeting specific crystal structures of mixed metal oxide nanoparticles are largely missing. Yet, in order to meet the requirements for a broad range of technical implementation it is necessary to tailor the properties of mixed metal oxides to the particular purpose. Here, we present a study on the impact of the nature of the gas environment on the resulting crystal structure during a post-synthesis thermal heat treatment of manganese–cobalt oxide nanoparticles. We monitor the evolution of the crystal phase structure as the gas atmosphere is altered from pure nitrogen to synthetic air and pure oxygen. The particle size and homogeneity of the resulting nanoparticles increase with oxygen content, while the crystal structure gradually changes from rocksalt-like to pure spinel. We find the composition of the particles to be independent of the gas atmosphere. The manganese–cobalt oxide nanoparticles exhibited promising electrocatalytic activity regarding oxygen evolution in alkaline electrolyte. These findings offer new synthesis pathways for the direct preparation of versatile utilizable mixed metal oxides.展开更多
基金supported by the Technische Universitat Berlin,the Max Planck Society and the Cluster of Excellence“Unifying Concepts in Catalysis(Uni Cat)”
文摘Direct electrochemical formation of hydrogen peroxide(H2O2) from pure O2 and H2on cheap metal-free earth abundant catalysts has emerged as the highest atom-efficient and environmentally friendly reaction pathway and is therefore of great interest from an academic and industrial point of view. Very recently,novel metal-free mesoporous nitrogen-doped carbon catalysts have attracted large attention due to the unique reactivity and selectivity for the electrochemical hydrogen peroxide formation [1–3]. In this work,we provide deeper insights into the electrocatalytic activity, selectivity and durability of novel metal-free mesoporous nitrogen-doped carbon catalyst for the peroxide formation with a particular emphasis on the influence of experimental reaction parameters such as p H value and electrode potential for three different electrolytes. We used two independent approaches for the investigation of electrochemical hydrogen peroxide formation, namely rotating ring-disk electrode(RRDE) technique and photometric UV–VIS technique. Our electrochemical and photometric results clearly revealed a considerable peroxide formation activity as well as high catalyst durability for the metal-free nitrogen-doped carbon catalyst material in both acidic as well as neutral medium at the same electrode potential under ambient temperature and pressure. In addition, the obtained electrochemical reactivity and selectivity indicate that the mechanisms for the electrochemical formation and decomposition of peroxide are strongly dependent on the p H value and electrode potential.
基金supported by the Federal Ministry of Education and Research under the grant reference number 03SF0433A "MEOKATS"
文摘Mixed metal oxides in the nanoscale are of great interest for many aspects of energy related research topics as water splitting, fuel cells and battery technology. The development of scalable, cost-efficient and robust synthetic routes toward well-defined solid state structures is a major objective in this field.While monometallic oxides have been studied in much detail, reliable synthetic recipes targeting specific crystal structures of mixed metal oxide nanoparticles are largely missing. Yet, in order to meet the requirements for a broad range of technical implementation it is necessary to tailor the properties of mixed metal oxides to the particular purpose. Here, we present a study on the impact of the nature of the gas environment on the resulting crystal structure during a post-synthesis thermal heat treatment of manganese–cobalt oxide nanoparticles. We monitor the evolution of the crystal phase structure as the gas atmosphere is altered from pure nitrogen to synthetic air and pure oxygen. The particle size and homogeneity of the resulting nanoparticles increase with oxygen content, while the crystal structure gradually changes from rocksalt-like to pure spinel. We find the composition of the particles to be independent of the gas atmosphere. The manganese–cobalt oxide nanoparticles exhibited promising electrocatalytic activity regarding oxygen evolution in alkaline electrolyte. These findings offer new synthesis pathways for the direct preparation of versatile utilizable mixed metal oxides.