期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Phase field modeling with large driving forces
1
作者 Jin Zhang Alexander F.Chadwick +1 位作者 David L.Chopp peter w.voorhees 《npj Computational Materials》 SCIE EI CSCD 2023年第1期623-631,共9页
There is growing interest in applying phase field methods as quantitative tools in materials discovery and development.However,large driving forces,common in many materials systems,lead to unstable phase field profile... There is growing interest in applying phase field methods as quantitative tools in materials discovery and development.However,large driving forces,common in many materials systems,lead to unstable phase field profiles,thus requiring fine spatial and temporal resolution.This demands more computational resources,limits the ability to simulate systems with a suitable size,and deteriorates the capability of quantitative prediction.Here,we develop a strategy to map the driving force to a constant perpendicular to the interface.Together with the third-order interpolation function,we find a stable phase field profile that is independent of the magnitude of the driving force.The power of this approach is illustrated using three models.We demonstrate that by using the driving force extension method,it is possible to employ a grid size orders of magnitude larger than traditional methods.This approach is general and should apply to many other phase field models. 展开更多
关键词 FORCES INTERPOLATION apply
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部