Ion beam methods for modification of nanohardness of surface nanolayers of the titanium alloy Ti6AI4V were applied. After deposition of carbon nanolayers by electron beam evaporation, the ion implantation of nitrogen ...Ion beam methods for modification of nanohardness of surface nanolayers of the titanium alloy Ti6AI4V were applied. After deposition of carbon nanolayers by electron beam evaporation, the ion implantation of nitrogen into samples was carried out. The chemical composition of the modified surface area was investigated by AES (auger electron spectroscopy). The nanohardness of resulted ion beam modified surface nanolayers were investigated by nanoindentation testing. The measured concentration profiles indicate the atomic mixing of carbon into the substrate. It was found that the modified samples had a markedly higher nanohardness than the unmodified samples. The increased nanohardness is attributed to the newly created phases in the surface area.展开更多
文摘Ion beam methods for modification of nanohardness of surface nanolayers of the titanium alloy Ti6AI4V were applied. After deposition of carbon nanolayers by electron beam evaporation, the ion implantation of nitrogen into samples was carried out. The chemical composition of the modified surface area was investigated by AES (auger electron spectroscopy). The nanohardness of resulted ion beam modified surface nanolayers were investigated by nanoindentation testing. The measured concentration profiles indicate the atomic mixing of carbon into the substrate. It was found that the modified samples had a markedly higher nanohardness than the unmodified samples. The increased nanohardness is attributed to the newly created phases in the surface area.