Observing the motion of electrons on their natural nanometer length and femtosecond time scales is a fundamental goal of and an open challenge for contemporary ultrafast science1–5.At present,optical techniques and e...Observing the motion of electrons on their natural nanometer length and femtosecond time scales is a fundamental goal of and an open challenge for contemporary ultrafast science1–5.At present,optical techniques and electron microscopy mostly provide either ultrahigh temporal or spatial resolution,and microscopy techniques with combined space-time resolution require further development6–11.In this study,we create an ultrafast electron source via plasmon nanofocusing on a sharp gold taper and implement this source in an ultrafast point-projection electron microscope.This source is used in an optical pump—electron probe experiment to study ultrafast photoemissions from a nanometer-sized plasmonic antenna12–15.We probe the real space motion of the photoemitted electrons with a 20-nm spatial resolution and a 25-fs time resolution and reveal the deflection of probe electrons by residual holes in the metal.This is a step toward time-resolved microscopy of electronic motion in nanostructures.展开更多
We investigate the optical properties of nanostructures of antimony sulfide(Sb2S3),a direct-bandgap semiconductor material that has recently sparked considerable interest as a thin film solar cell absorber.Fabrication...We investigate the optical properties of nanostructures of antimony sulfide(Sb2S3),a direct-bandgap semiconductor material that has recently sparked considerable interest as a thin film solar cell absorber.Fabrication from a nanoparticle ink solution and two-and three-dimensional nanostructuring with pattern sizes down to 50 nm have recently been demonstrated.Insight into the yet unknown nanoscopic optical properties of these nanostructures is highly desired for their future applications in nanophotonics.We implement a spectrally broadband scattering-type near-field optical spectroscopy technique to study individual Sb2S3 nanodots with a 20-nm spatial resolution,covering the range from 700 to 900 nm.We show that in this below-bandgap range,the Sb2S3 nanostructures act as high-refractive-index,low-loss waveguides with mode profiles close to those of idealized cylindrical waveguides,despite a considerable structural disorder.In combination with their high above-bandgap absorption,this makes them promising candidates for applications as dielectric metamaterials,specifically for ultrafast photoswitching.展开更多
We report long-lived,highly spatially localized plasmon states on the surface of nanoporous gold nanoparticles—nanosponges—with high excitation efficiency.It is well known that disorder on the nanometer scale,partic...We report long-lived,highly spatially localized plasmon states on the surface of nanoporous gold nanoparticles—nanosponges—with high excitation efficiency.It is well known that disorder on the nanometer scale,particularly in two-dimensional systems,can lead to plasmon localization and large field enhancements,which can,in turn,be used to enhance nonlinear optical effects and to study and exploit quantum optical processes.Here,we introduce promising,three-dimensional model systems for light capture and plasmon localization as gold nanosponges that are formed by the dewetting of gold/silver bilayers and dealloying.We study light-induced electron emission from single nanosponges,a nonlinear process with exponents of n≈5...7,using ultrashort laser pulse excitation to achieve femtosecond time resolution.The long-lived electron emission process proves,in combination with optical extinction measurements and finite-difference time-domain calculations,the existence of localized modes with lifetimes of more than 20 fs.These electrons couple efficiently to the dipole antenna mode of each individual nanosponge,which in turn couples to the far-field.Thus,individual gold nanosponges are cheap and robust disordered nanoantennas with strong local resonances,and an ensemble of nanosponges constitutes a meta material with a strong polarization independent,nonlinear response over a wide frequency range.展开更多
基金the Deutsche Forschungsgemeinschaft for support within the priority program QUTIF(SPP1840)support from SPP1839,the German-Israeli Foundation(GIF grant no.1256)+2 种基金the Korea Foundation for International Cooperation of Science and Technology(Global Research Laboratory project,K20815000003)is acknowledgedthe HPC Cluster CARL in Oldenburg(DFG INST 184/157-1 FUGG)the Studienstiftung des Deutschen Volkes for the personal grant.
文摘Observing the motion of electrons on their natural nanometer length and femtosecond time scales is a fundamental goal of and an open challenge for contemporary ultrafast science1–5.At present,optical techniques and electron microscopy mostly provide either ultrahigh temporal or spatial resolution,and microscopy techniques with combined space-time resolution require further development6–11.In this study,we create an ultrafast electron source via plasmon nanofocusing on a sharp gold taper and implement this source in an ultrafast point-projection electron microscope.This source is used in an optical pump—electron probe experiment to study ultrafast photoemissions from a nanometer-sized plasmonic antenna12–15.We probe the real space motion of the photoemitted electrons with a 20-nm spatial resolution and a 25-fs time resolution and reveal the deflection of probe electrons by residual holes in the metal.This is a step toward time-resolved microscopy of electronic motion in nanostructures.
基金funding by the Deutsche Forschungsgemeinschaft(SPP1391,SPP1839,GRK1885)the Niedersachsisches Ministerium für Wissenschaft und Kultur(LGRK,Nano-Energieforschung)+2 种基金the Korea Foundation for International Cooperation of Science and Technology(K20815000003)the German-Israeli Foundation(1256)financial support by the China Scholarship Council(CSC 201404910464)
文摘We investigate the optical properties of nanostructures of antimony sulfide(Sb2S3),a direct-bandgap semiconductor material that has recently sparked considerable interest as a thin film solar cell absorber.Fabrication from a nanoparticle ink solution and two-and three-dimensional nanostructuring with pattern sizes down to 50 nm have recently been demonstrated.Insight into the yet unknown nanoscopic optical properties of these nanostructures is highly desired for their future applications in nanophotonics.We implement a spectrally broadband scattering-type near-field optical spectroscopy technique to study individual Sb2S3 nanodots with a 20-nm spatial resolution,covering the range from 700 to 900 nm.We show that in this below-bandgap range,the Sb2S3 nanostructures act as high-refractive-index,low-loss waveguides with mode profiles close to those of idealized cylindrical waveguides,despite a considerable structural disorder.In combination with their high above-bandgap absorption,this makes them promising candidates for applications as dielectric metamaterials,specifically for ultrafast photoswitching.
基金support by the Deutsche Forschungsgemeinschaft(SPP1839‘Tailored Disorder’,grants LI 580/12,RU 1383/5,SCHA 632/24)the Korea Foundation for the International Cooperation of Science and Technology(Global Research Laboratory project,K20815000003)+1 种基金the German-Israeli Foundation(GIF Grant No.1256)is gratefully acknowledgeda personal grant from the Studienstiftung des Deutschen Volkes.
文摘We report long-lived,highly spatially localized plasmon states on the surface of nanoporous gold nanoparticles—nanosponges—with high excitation efficiency.It is well known that disorder on the nanometer scale,particularly in two-dimensional systems,can lead to plasmon localization and large field enhancements,which can,in turn,be used to enhance nonlinear optical effects and to study and exploit quantum optical processes.Here,we introduce promising,three-dimensional model systems for light capture and plasmon localization as gold nanosponges that are formed by the dewetting of gold/silver bilayers and dealloying.We study light-induced electron emission from single nanosponges,a nonlinear process with exponents of n≈5...7,using ultrashort laser pulse excitation to achieve femtosecond time resolution.The long-lived electron emission process proves,in combination with optical extinction measurements and finite-difference time-domain calculations,the existence of localized modes with lifetimes of more than 20 fs.These electrons couple efficiently to the dipole antenna mode of each individual nanosponge,which in turn couples to the far-field.Thus,individual gold nanosponges are cheap and robust disordered nanoantennas with strong local resonances,and an ensemble of nanosponges constitutes a meta material with a strong polarization independent,nonlinear response over a wide frequency range.