Inhomogeneities in the temperature series from Beijing and Shanghai are analyzed, using the detailed histories of both sets of observations. The major corrections for different periods range from ?0.33 to 0.6°C f...Inhomogeneities in the temperature series from Beijing and Shanghai are analyzed, using the detailed histories of both sets of observations. The major corrections for different periods range from ?0.33 to 0.6°C for Beijing and ?0.33 to 0.3°C for Shanghai, Annual mean and extreme temperature series are deduced from the daily observations and trends in the adjusted and unadjusted series are compared. The adjusted yearly mean temperatures show a warming trend of 0.5°C/ century since the turn of this century and an enhanced one of 2.0°C/ century since the 1960s. In contrast, the unadjusted data show a twice this value trend for Shanghai but little trend for Beijing at the long-term scale and overestimate the recent warming by 50%–130%. Beijing experienced a decrease of frequency of the extremes together with a cooling during the 1940s–1970s and an increase of frequency of extremes together with a warming since then. The trends of frequency of extremes at Shanghai were more or less opposite. It is implied that the regional trends of strong weather variations may be different even when the regional mean temperatures coherently change. Key words Inhomogeneity - Daily temperature series - Climatic warming - Extreme temperature The study was supported by the China NKBRSF Project G 1999043400, IAP/ DF and CAS project (KZ951-A1-402).展开更多
Based on C-LSAT2.0,using high-and low-frequency components reconstruction methods,combined with observation constraint masking,a reconstructed C-LSAT2.0 with 756 ensemble members from the 1850s to 2018 has been develo...Based on C-LSAT2.0,using high-and low-frequency components reconstruction methods,combined with observation constraint masking,a reconstructed C-LSAT2.0 with 756 ensemble members from the 1850s to 2018 has been developed.These ensemble versions have been merged with the ERSSTv5 ensemble dataset,and an upgraded version of the CMSTInterim dataset with 5°×5°resolution has been developed.The CMST-Interim dataset has significantly improved the coverage rate of global surface temperature data.After reconstruction,the data coverage before 1950 increased from 78%−81%of the original CMST to 81%−89%.The total coverage after 1955 reached about 93%,including more than 98%in the Northern Hemisphere and 81%−89%in the Southern Hemisphere.Through the reconstruction ensemble experiments with different parameters,a good basis is provided for more systematic uncertainty assessment of C-LSAT2.0 and CMSTInterim.In comparison with the original CMST,the global mean surface temperatures are estimated to be cooler in the second half of 19th century and warmer during the 21st century,which shows that the global warming trend is further amplified.The global warming trends are updated from 0.085±0.004℃(10 yr)^(–1)and 0.128±0.006℃(10 yr)^(–1)to 0.089±0.004℃(10 yr)^(–1)and 0.137±0.007℃(10 yr)^(–1),respectively,since the start and the second half of 20th century.展开更多
Global mean surface temperature(GMST)is one of the most important large-scale indicators for characterizing climate change on Earth,and Surface Temperature(ST)is also the most accurate key climate element currently un...Global mean surface temperature(GMST)is one of the most important large-scale indicators for characterizing climate change on Earth,and Surface Temperature(ST)is also the most accurate key climate element currently understood by scientists and the public.Even so,there have been extensive discussions about the accuracy of global(regional)surface temperature(air temperature)changes[lj.From the perspective of climatic data acquisition and data reliability,the current GMST series and the evaluation of global warming rates are all based on several observation-based datasets produced by combining anomalies of Land Surface Air Temperatures(LSAT)and Sea Surface Temperatures(SST).展开更多
基金the China NKBRSF Project G1999043400, IAP / DF and CAS project(KZ951-A1-402).
文摘Inhomogeneities in the temperature series from Beijing and Shanghai are analyzed, using the detailed histories of both sets of observations. The major corrections for different periods range from ?0.33 to 0.6°C for Beijing and ?0.33 to 0.3°C for Shanghai, Annual mean and extreme temperature series are deduced from the daily observations and trends in the adjusted and unadjusted series are compared. The adjusted yearly mean temperatures show a warming trend of 0.5°C/ century since the turn of this century and an enhanced one of 2.0°C/ century since the 1960s. In contrast, the unadjusted data show a twice this value trend for Shanghai but little trend for Beijing at the long-term scale and overestimate the recent warming by 50%–130%. Beijing experienced a decrease of frequency of the extremes together with a cooling during the 1940s–1970s and an increase of frequency of extremes together with a warming since then. The trends of frequency of extremes at Shanghai were more or less opposite. It is implied that the regional trends of strong weather variations may be different even when the regional mean temperatures coherently change. Key words Inhomogeneity - Daily temperature series - Climatic warming - Extreme temperature The study was supported by the China NKBRSF Project G 1999043400, IAP/ DF and CAS project (KZ951-A1-402).
文摘Based on C-LSAT2.0,using high-and low-frequency components reconstruction methods,combined with observation constraint masking,a reconstructed C-LSAT2.0 with 756 ensemble members from the 1850s to 2018 has been developed.These ensemble versions have been merged with the ERSSTv5 ensemble dataset,and an upgraded version of the CMSTInterim dataset with 5°×5°resolution has been developed.The CMST-Interim dataset has significantly improved the coverage rate of global surface temperature data.After reconstruction,the data coverage before 1950 increased from 78%−81%of the original CMST to 81%−89%.The total coverage after 1955 reached about 93%,including more than 98%in the Northern Hemisphere and 81%−89%in the Southern Hemisphere.Through the reconstruction ensemble experiments with different parameters,a good basis is provided for more systematic uncertainty assessment of C-LSAT2.0 and CMSTInterim.In comparison with the original CMST,the global mean surface temperatures are estimated to be cooler in the second half of 19th century and warmer during the 21st century,which shows that the global warming trend is further amplified.The global warming trends are updated from 0.085±0.004℃(10 yr)^(–1)and 0.128±0.006℃(10 yr)^(–1)to 0.089±0.004℃(10 yr)^(–1)and 0.137±0.007℃(10 yr)^(–1),respectively,since the start and the second half of 20th century.
基金supported by the National Natural Science Foundation of China (41975105)the National Key Research & Development Program of China (2018YFC1507705 and 2017YFC1502301)。
文摘Global mean surface temperature(GMST)is one of the most important large-scale indicators for characterizing climate change on Earth,and Surface Temperature(ST)is also the most accurate key climate element currently understood by scientists and the public.Even so,there have been extensive discussions about the accuracy of global(regional)surface temperature(air temperature)changes[lj.From the perspective of climatic data acquisition and data reliability,the current GMST series and the evaluation of global warming rates are all based on several observation-based datasets produced by combining anomalies of Land Surface Air Temperatures(LSAT)and Sea Surface Temperatures(SST).